書名: AI+IoT佈建邊緣運算:電腦視覺業界專案原理及實作 (1版)
作者: 張晨然
版次: 1
ISBN: 9786267383032
出版社: 深智數位
出版日期: 2023/11
書籍開數、尺寸: 17x23x2.86
頁數: 584
內文印刷顏色: 單色
#資訊
#AI人工智慧與機器學習
定價: 980
售價: 882
庫存: 庫存: 1
LINE US! 詢問這本書 團購優惠、書籍資訊 等

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

詳細資訊

內容簡介   本書共5篇,第1篇、第2篇重點介紹以YOLO為代表的一階段物件辨識神經網路;第3篇、第4篇重點介紹物件辨識神經網路在雲端和邊緣端的部署,其中對邊緣端的量化原理進行了重點介紹;第5篇重點介紹當前較為流行的自動駕駛的資料計算原理和物件辨識。本書實用性非常強,既適合對電腦視覺具有一定了解的高等院校大學生、所究所學生及具有轉型意願的軟體工程師入門學習,又適合電腦視覺工程項目研發和營運人員參考閱讀。   第1篇,以知名電腦視覺競賽任務為例,旨在介紹物件辨識應用場景下的基本概念和約定,以及資料標注工具和格式,讓讀者具備特徵融合網路、預測網路的設計能力。對於資料後處理技術則介紹了解碼網路、資料重網路拓樸路、NMS演算法等後處理演算法,在此基礎上結合各式各樣的骨幹網路,讀者就可以架設完整的一階段物件辨識神經網路模型了。   第2篇,旨在介紹物件辨識神經網路的訓練全流程。本篇從資料集製作到損失函式設計,從訓練資料監控到NaN或INF異常處理,特別是對不同損失函式的設計,進行了非常詳細的原理性闡述。相比神經網路設計,損失函式的設計是最具有可解釋性的,也是電腦視覺研究中比較容易出成果的研究方向。   第3篇,旨在運用物件辨識神經網路的訓練成果,架設完整的物件辨識推理模型。推理模型支援雲端部署和邊緣端部署。對於雲端部署,以主流的亞馬遜雲端為例介紹;對於邊緣端部署,以GoogleCoral開發板為例,介紹神經網路量化模型的基礎原理和模型編譯邏輯。   第4篇,結合作者主導過的智慧交通、智慧後勤等專案,旨在介紹實際電腦視覺資料增強技術,以及神經網路性能評估的原理和具體應用。本篇還結合應用同樣廣泛的算能科技(比特中國)SE5邊緣計算閘道和瑞芯微RK3588邊緣計算系統,介紹實際專案中如何使用邊緣計算硬體加速人工智慧的產業化應用。根據邊緣計算硬體特性對神經網路進行針對性修改,是真正考驗一個開發者對神經網路理解程度的試金石。跟隨本書介紹熟練掌握2~3款邊緣計算硬體,就能更快速地將電腦視覺應用到實際生產中,在具體應用中創造價值。   第5篇,旨在將讀者引入三維電腦視覺中最重要的應用領域之一:自動駕駛。圍繞KITTI資料集,本篇介紹了自動駕駛資料的計算原理,並重點介紹了PointNet++等多個三維物件辨識神經網路。   附錄列表說明了本書所參考的物件辨識原始程式碼、Python運行環境架設,以及TensorFlow的基本操作。對基本操作有疑問的讀者,可以根據附錄中的說明登入相關網站進行查閱和提問。 目錄 第1篇 一階段物件辨識神經網路的結構設計 第1章 物件辨識的競賽和資料集 1.1電腦視覺座標系的約定和概念 1.1.1 圖型的座標系約定 1.1.2 矩形框的描述方法約定 1.2 PASCAL VOC競賽和資料集 1.2.1 PASCAL VOC競賽任務和資料集簡介 1.2.2 PASCAL VOC2007資料集探索 1.3 MS COCO挑戰賽和資料集 1.3.1 MS COCO挑戰賽的競賽任務 1.3.2 MS COCO資料集簡介 1.4 物件辨識標注的解析和統計 1.4.1 XML檔案的格式 1.4.2 XML檔案解析和資料均衡性統計 第2章 物件辨識神經網路整體說明 2.1 幾個著名的物件辨識神經網路 2.1.1 R-CNN家族神經網路簡介 2.1.2 YOLO和SSD神經網路簡介 2.1.3 CenterNet神經網路簡介 2.1.4 U-Net神經網路簡介 2.2 物件辨識神經網路分類和高階API資源 2.3 矩形框的交並比評價指標和實現 第3章 一階段物件辨識神經網路的特徵融合和中段網路 3.1 一階段物件辨識神經網路的整體結構 3.2 一階段物件辨識神經網路的若干中段網路介紹 3.2.1 單向融合的中段網路 3.2.2 簡單雙向融合的中段網路 3.2.3 複雜雙向融合的中段網路 3.3 不同融合方案中段網路的關係和應用 3.4 YOLO的多尺度特徵融合中段網路案例 3.4.1 YOLOV3的中段網路及實現 3.4.2 YOLOV4的中段網路PANet及實現 3.4.3 YOLOV3-tiny和YOLOV4-tiny版本的中段網路及實現 3.5 神經網路輸出的解碼 3.5.1 融合特徵圖的幾何含義 3.5.2 矩形框中心點座標的解碼 3.5.3 矩形框寬度和高度的解碼 3.5.4 前背景機率和分類機率的解碼 3.5.5 矩形框角點座標和解碼函式整體輸出 第4章 一階段物件辨識神經網路典型案例——YOLO解析 4.1 YOLO家族物件辨識神經網路簡介 4.2 先驗錨框和YOLO神經網路的檢測想法 4.2.1 用人為設定方式找到的先驗錨框 4.2.2 用聚類回歸方式找到的先驗錨框 4.2.3 YOLO的先驗錨框編號 4.2.4 YOLO的XYSCALE和縮放比參數 4.3 建立YOLO神經網路 4.3.1 根據選擇確定YOLO神經網路參數 4.3.2 建立骨幹網路、中段網路和預測網路 4.3.3 加上解碼網路後建立完整的YOLO模型 4.4 YOLO神經網路的遷移學習和權重載入 4.4.1 骨幹網路關鍵層的起止編號 4.4.2 中段網路和預測網路關鍵層的起止編號 4.4.3 YOLO模型的權重載入 4.5 原版YOLO模型的預測 4.5.1 原版YOLO模型的建立和參數載入 4.5.2 神經網路的輸入/輸出資料重組 4.6 NMS演算法的原理和預測結果視覺化 4.6.1 傳統NMS演算法原理 4.6.2 NMS演算法的變種 4.6.3 預測結果的篩選和視覺化 4.7 YOLO模型的多個衍生變種簡介 4.8 YOLO模型的發展與展望 第2篇 YOLO神經網路的損失函式和訓練 第5章 將資料資源製作成標準TFRecord資料集檔案 5.1 資料資源的載入 5.2 資料資源的解析和提取 5.3 TFRecord資料集檔案的製作 5.4 單樣本的example物件製作 5.5 遍歷全部樣本製作完整資料集 5.6 從資料集提取樣本進行核對 第6章 資料集的後續處理 6.1 資料集的載入和打包 6.1.1 資料集的載入和矩陣化 6.1.2 圖型矩陣尺寸的標準化 6.1.3 真實矩形框標注矩陣尺寸的標準化 6.1.4 資料集的打包處理 6.2 將原始資料集打包為可計算資料集 6.2.1 計算真實矩形框與先驗錨框的匹配度排名 6.2.2 找到真實矩形框所對應的網格下的先驗錨框 6.2.3 可計算資料集測試 第7章 一階段物件辨識的損失函式的設計和實現 7.1 損失函式框架和輸入資料的合理性判別 7.2 真實資料和預測資料的對應和分解 7.3 預測矩形框的前背景歸類和權重分配 7.4 預測矩形框的誤差度量 7.4.1 用中心點表示的位置誤差 7.4.2 用寬度和高度表示的位置誤差 7.4.3 用通用交並比表示的矩形框誤差 7.4.4 用距離交並比表示的矩形框誤差 7.4.5 用完整交並比表示的矩形框誤差 7.4.6 用交並比量化矩形框預測誤差的實踐 7.5 前景和背景的預測誤差 7.5.1 前景誤差和背景誤差的定義 7.5.2 樣本均衡原理和Focal-Loss應用 7.6 分類預測誤差 7.7 總誤差的合併和數值合理性確認 第8章 YOLO神經網路的訓練 8.1 資料集和模型準備 8.1.1 參數配置 8.1.2 資料集前置處理 8.1.3 模型參數載入和凍結 8.2 動態模式訓練 8.2.1 監控指標的設計和日誌儲存 8.2.2 動態模式下神經網路的訓練和偵錯 8.3 訓練中非法數值的監控和偵錯 8.3.1 發現和監控非法數值計算結果 8.3.2 計算結果出現非法數值的原因和對策 8.4 靜態模式訓練和TensorBoard監控 第3篇 物件辨識神經網路的雲端和邊緣端部署 第9章 一階段物件辨識神經網路的雲端訓練和部署 9.1 一階段物件辨識神經網路的推理模型設計 9.1.1 一階段物件辨識神經網路的推理形態 9.1.2 推理場景下的資料重網路拓樸路 9.1.3 構造推理場景下的YOLO模型函式 9.1.4 構造和測試YOLO推理模型 9.2 物件辨識推理模型的雲端部署 9.2.1 亞馬遜EC2雲端運算實例選型 9.2.2 使用雲端伺服器部署模型並回應推理請求 9.3 在亞馬遜SageMakerStudio上訓練雲端運算模型 第10章 神經網路的INT8全整數量化原理 10.1 神經網路量化模型的基本概念 10.1.1 神經網路量化模型速覽和視覺化 10.1.2 浮點數值的量化儲存和計算原理 10.2 神經網路量化模型的製作和分析 10.2.1 運算元的映射和合併 10.2.2 量化參數搜索和代表資料集 10.2.3 TFLite量化模型的運算元和張量分析 10.3 量化性能分析和量化模型的逐層偵錯 10.3.1 量化信噪比分析原理 10.3.2 量化模型的單層誤差偵錯 10.3.3 量化模型的誤差累積偵錯 10.4 不支援運算元的替換技巧 10.4.1 大動態範圍非線性運算元替換原理 10.4.2 大動態範圍非線性運算元替換效果 第11章 以YOLO和Edge TPU為例的邊緣計算實戰 11.1 TensorFlow模型的量化 11.1.1 量化感知訓練獲得INT8整數模型 11.1.2 訓練後量化獲得INT8整數模型 11.2 神經網路模型的編譯 11.2.1 模型編譯的工作原理 11.2.2 在Edge TPU上部署模型的注意事項 11.3 YOLO物件辨識模型的量化和編譯 11.3.1 YOLO變種版本選擇和骨幹網路修改 11.3.2 針對硬體限制進行解碼網路的修改 11.3.3 預測矩陣的整理重組 11.3.4 YOLO推理模型的建立 11.3.5 YOLO模型的量化 11.3.6 量化模型的測試和信噪比分析 11.4 YOLO量化模型的編譯和邊緣端部署 11.4.1 量化模型轉為編譯模型 11.4.2 撰寫邊緣端編譯模型推理程式 第4篇 個性化資料增強和物件辨識神經網路性能測試 第12章 個性化物件辨識資料集處理 12.1 農村公路佔道資料的物件辨識應用 12.1.1 專案資料背景 12.1.2 資料的前置處理 12.2 資料的增強 12.2.1 資料增強技術的概念和效果 12.2.2 基於空間變換的資料增強方法 12.2.3 基於顏色空間的資料增強方法 12.2.4 其他圖像資料的增強手法 12.2.5 圖像資料集的增強工具和探索工具 12.3 使用Albumentations進行資料增強 12.3.1 Albumentations的安裝和使用 12.3.2 幾何資料增強管道的配置 12.3.3 使用資料管道處理並儲存資料 12.3.4 像素資料增強管道的配置 12.3.5 增強資料集的運用 第13章 模型性能的定量測試和決策設定值選擇 13.1 神經網路性能量化的基本概念 13.1.1 神經網路預測的混淆矩陣 13.1.2 神經網路量化評估和P-R曲線 13.1.3 多分類物件辨識場景和平均精確率平均值 13.1.4 F分數評估方法 13.2 餐盤辨識神經網路性能測試案例 13.2.1 專案背景 13.2.2 提取全部真實資料和預測結果 13.2.3 模擬不同決策設定值下的精確率和召回率 第14章 使用邊緣計算閘道進行多路攝影機物件辨識 14.1 邊緣計算閘道的整體結構 14.1.1 核心TPU組件 14.1.2 計算卡和模組 14.1.3 下位機的作業系統 14.1.4 下位機的開發環境簡介 14.2 開發環境準備 14.2.1 上位機安裝Docker 14.2.2 上位機加載鏡像和SDK開發套件 14.2.3 神經網路工具鏈和主要用途 14.2.4 針對TensorFlow模型的編譯方法 14.3 浮點32位元模型部署的全流程 14.3.1 訓練主機將Keras模型轉為單pb模型檔案 14.3.2 上位機將單pb模型檔案編譯為bmodel模型檔案 14.3.3 下位機讀取和探索bmodel模型檔案 14.3.4 下位機使用bmodel模型檔案進行推理 14.4 邊緣端全整數量化模型部署 14.4.1 在上位機Docker內製作代表資料集 14.4.2 在上位機Docker內生成fp32umodel模型檔案 14.4.3 手動增加fp32umodel模型檔案的輸入層映射運算元 14.4.4 對fp32umodel模型檔案進行最佳化 14.4.5 在上位機Docker內將fp32umodel模型檔案編譯為int8umodel模型檔案 14.4.6 umodel模型檔案的偵錯技巧 14.5模型的編譯和部署 14.5.1 上位機將int8umodel模型檔案編譯為bmodel模型檔案 14.5.2 全整數量化int8bmodel模型檔案的邊緣端推導和測試 14.5.3 編譯模型在邊緣計算閘道上的性能測試 第15章 邊緣計算開發系統和RK3588 15.1 RK3588邊緣推理開發系統結構 15.1.1 開發板和核心晶片架構 15.1.2 開發板作業系統和偵錯環境 15.2開發工具鏈和神經網路模型部署 15.2.1 上位機開發環境配置 15.2.2 上位機的模型轉換 15.2.3 下位機使用編譯模型進行推理 15.2.4 RK3588的運算元偵錯技巧 第5篇 三維電腦視覺與自動駕駛 第16章 三維物件辨識和自動駕駛 16.1 自動駕駛資料集簡介 16.2 KITTI資料集計算原理 16.3 自動駕駛的點雲特徵提取 附錄A 官方程式引用說明 附錄B 本書運行環境架設說明 附錄C TensorFlow矩陣基本操作

為您推薦

人工智慧:智慧型系統導論3/e (3版)

人工智慧:智慧型系統導論3/e (3版)

相關熱銷的書籍推薦給您

書名:人工智慧:智慧型系統導論(第三版) 作者:李聯旺 出版社:全華 ISBN:9789862800959

原價: 590 售價: 519 現省: 71元
立即查看
電子書 Practical Java Programming for IoT, AI, and Blockchain Xiao 9781119560012  2019 <JW>

電子書 Practical Java Programming for IoT, AI, and Blockchain Xiao 9781119560012 2019 <JW>

類似書籍推薦給您

原價: 927 售價: 927 現省: 0元
立即查看
圖解智慧工廠:IoT、AI、RPA如何改變製造業 2020 <經濟新潮社(城邦)>

圖解智慧工廠:IoT、AI、RPA如何改變製造業 2020 <經濟新潮社(城邦)>

類似書籍推薦給您

原價: 420 售價: 336 現省: 84元
立即查看
Wireless AI: Wireless Sensing, Positioning, IoT, and Communications

Wireless AI: Wireless Sensing, Positioning, IoT, and Communications

類似書籍推薦給您

原價: 1960 售價: 1960 現省: 0元
立即查看
踏上生成式AI自學之路: 從底層技術、程式實作到企業應用 (1版)

踏上生成式AI自學之路: 從底層技術、程式實作到企業應用 (1版)

類似書籍推薦給您

【簡介】   「人工智慧 (Artificial Intelligence, AI) 」 一詞,最早可追溯至20世紀中英國數學家艾倫.圖靈發表的論文Computing Machinery and Intelligence。隨著時間推移,硬體與軟體技術的迅速進步讓電腦運算速度大幅提升、成本顯著下降,並且配合演算法領域的卓越研究成果,人工智慧領域不再是遙不可及的夢想。21世紀初,AlphaGo達到可以對決頂尖圍棋高手的程度,到了2022年,OpenAI正式推出ChatGPT,更讓人工智慧真正普及到大眾生活。     生成式AI在各行各業專業領域中帶來重大變革,本書能幫助您突破生成式AI的工具性操作,深入了解其背後的技術、應用與影響力。全書共有七個章節,內容涵蓋生成式AI的底層邏輯、實務操作、企業管理策略等三個面向。     第一到三章聚焦於生成式AI的底層邏輯,會依序介紹AI先備知識、經典模型以及生成式AI 核心架構:Transformer,即便您沒有資訊背景也能夠讀懂。第四到六章聚焦於生成式AI的實務操作,介紹提示工程(Prompt Engineering),教您如何讓生成式AI產出高品質的回應,並手把手地帶您使用ChatGPT API 實作兩個小專案:檢索增強生成(RAG)以及網站智能客服。第七章聚焦於生成式AI的企業管理策略,針對企業最迫切關注的議題:如何導入生成式AI,提出淺見與看法。 【目錄】 序言 1從AI 到生成式AI 1-1 生成式AI 的演進 1-2 生成式AI 的應用 1-3 生成式AI 的挑戰 2生成式AI 先備知識 2-1 機器學習 2-2 深度學習 2-3 自然語言處理與理解 2-4 文字轉向量 2-5 大型語言模型 2-6 RNN 遞迴神經網路 2-7 LSTM 長短期記憶模型 2-8 GAN 生成對抗網路 3 Transformer 深入淺出 3-1 Transformer 簡介 3-2 Transformer 輸入 3-3 Transformer 編碼器 3-4 Transformer 解碼器 3-5 Transformer 輸出 3-6 Google Titans 模型 3-7 DeepSeek R1 模型 4提示工程 4-1 提示工程簡介 4-2 指令微調(Prompt-Tuning) 4-3 上下文學習(In-Context Learning) 4-4 大模型微調(Fine-Tuning) 4-5 思維鏈(Chain of Thought) 4-6 客製化指令 5實作檢索增強生成 5-1 前置作業 5-2 準備目標檔案 5-3 切割目標檔案 5-4 建立向量資料庫 5-5 檢索合適的回答 5-6 問答 5-7 聊天 6實作網站智能客服 6-1 工具準備 6-2 建立主機空間 6-3 建立網站 6-4 編輯網頁 6-5 網站上網 6-6 建立系統後端 6-7 建立系統前端 7企業導入生成式AI 7-1 人工智慧原則 7-2 企業面臨的挑戰 7-3 生成式AI 的導入流程 7-4 未來趨勢—AI 代理 結語 看更多

原價: 520 售價: 442 現省: 78元
立即查看
Microsoft Azure AI Services與Azure OpenAI從入門到人工智慧程式開發-使用Python(含MCF AI-900國際認證) (1版)

Microsoft Azure AI Services與Azure OpenAI從入門到人工智慧程式開發-使用Python(含MCF AI-900國際認證) (1版)

類似書籍推薦給您

【簡介】   體貼初學者學習Azure AI服務的流程!   Azure AI服務功能介紹 > Azure AI服務申請 > 語法解說 > AI範例實作      ■ 專家與教師共同執筆    由微軟AI + Developer 雙領域 MVP與科技大學教師共同編著,針對初學者學習Azure AI領域所應具備的基本素養,所編寫入門教材,內容由淺入深,以引發學習動機為最主要考量,帶領初學者靈活運用Azure AI與Azure OpenAI進行開發AI應用程式。      ■ 內容多元且淺顯易懂    對Azure AI服務的理論做深入淺出的說明,同時廣泛列舉相關應用實例,並使用適當的插圖和圖表,說明Azure AI技術的原理和實際運作方案,讓初學者對Azure AI有更進一步的認識。      ■ Azure AI服務開發技能    介紹實用的入門開發實作,以培養初學者規劃AI解決方案的能力。實作包含:電腦視覺、OCR光學字元辨識、自訂視覺、臉部偵測與分析、文字分析、問題解答知識庫、翻譯、語音合成以及機器學習分類、迴歸和叢集模型的實作範例,並介紹目前最火紅的Azure OpenAI生成式AI開發聊天機器人與AI繪圖程式;詳盡說明實作的程式碼與操作步驟,培養初學者開發AI應用程式的能力。      ■ Microsoft AI-900人工智慧基礎國際認證能力訓練    將認證考試重點融入書中,讀者能藉由練習來了解該章內容重點,同時書末彙整MCF AI-900核心能力國際認證模擬試題,是考取MCF AI-900人工智慧基礎國際認證的最佳教材。  【目錄】 第1章 Microsoft Azure AI 基本概念:使用人工智慧的開始  1.1 人工智慧簡介  1.2 Microsoft Azure AI 簡介  1.3 模擬試題  第2章 負責任的 AI  2.1 AI 造成的道德和社會問題  2.2 了解負責任的AI  2.3 申請Azure 帳戶  2.4 模擬試題  第3章 認識 Colab 程式編輯環境  3.1 Colab 簡介  3.2 安裝 Colab  3.3 Colab 環境簡介  3.4 編輯第一個 Colab 筆記本  3.5 Colab 常用功能  第4章 Gradio 互動式網頁  4.1 簡介認識 Gradio  4.2 Gradio 基本語法介紹  4.3 Gradio 常用的輸出入元件  第5章 探索電腦視覺(一)電腦視覺分析  5.1 Azure AI 視覺簡介  5.2 Azure AI 視覺服務  5.3 Azure AI 服務開發環境與必要條件  5.4 Azure AI 視覺開發實作  5.5 模擬試題  第6章 探索電腦視覺(二)OCR 與文件智慧服務  6.1 光學字元識別 (OCR)  6.2 Azure AI 視覺服務讀取文字  6.3 文件智慧服務和知識採礦  6.4 Azure Al 視覺服務讀取影像文字開發實作  6.5 模擬試題  第7章 探索電腦視覺(三)臉部服務  7.1 臉部辨識服務簡介  7.2 臉部偵測  7.3 臉部分析  7.4 臉部識別  7.5 臉部辨識服務開發實作  7.6 模擬試題  第8章 探索電腦視覺(四)自訂視覺  8.1 自訂視覺簡介  8.2 自訂視覺影像分類  8.3 在 Azure 使用影像分類  8.4 自訂視覺物件偵測  8.5 在 Azure 使用物件偵測  8.6 自訂視覺範例實作  8.7 模擬試題  第9章 探索自然語言處理(一)文字分析  9.1 自然語言處理簡介  9.2 自然語言處理  9.3 使用 Azure AI 語言服務分析文字  9.4 文字分析開發實作  9.5 模擬試題  第10章 探索自然語言處理(二)對話式AI  10.1 對話式AI 簡介  10.2 問題與解答對話系統  10.3 使用交談語言理解建立語言模型  10.4 Azure AI 機器人服務  10.5 自訂問題解答開發實作  10.6 模擬試題  第11章 探索自然語言處理(三)語音與翻譯  11.1 語音辨識與語音合成  11.2 語音服務功能介紹  11.3 文字翻譯  11.4 翻譯服務功能介紹  11.5 文字翻譯開發實作  11.6 語音合成開發實作  11.7 模擬試題  第12章 Azure 機器學習基本原理  12.1 機器學習簡介  12.2 機器學習的工作流程  12.3 機器學習的模型  12.4 分類模型  12.5 迴歸模型  12.6 叢集模型  12.7 模擬試題  第13章 Azure 機器學習實作  13.1 Azure 機器學習服務簡介  13.2 Azure 機器學習設計工具的工作流程  13.3 使用設計工具建立模型  13.4 使用 Azure 機器學習自動化 ML  13.5 使用提示流程建立 AI 應用程式  13.6 模擬試題  第14章 Azure OpenAI  14.1 生成式 AI 簡介  14.2 大型語言模型  14.3 Azure OpenAI 簡介  14.4 Copilots 簡介  14.5 使用提示工程改善生成式 AI 回應  14.6 Azure OpenAI 生成式 AI 應用程式開發實作  14.7 模擬試題  附錄A MCF AI-900 人工智慧基礎國際認證模擬試題  看更多

原價: 560 售價: 476 現省: 84元
立即查看