書名: 機器學習與人工智慧深度問答集:從基礎到專業,提升AI知識力的30道深度思考題 (1版)
作者: Sebastian Raschka
譯者: 博碩AI編輯室
版次: 1
ISBN: 9786263339248
出版社: 博碩
出版日期: 2024/08
頁數: 288
定價: 650
售價: 585
庫存: 已售完
LINE US!
此書已為「缺書」無法下單! 請見諒

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

為您推薦

Python 機器學習與深度學習特訓班:看得懂也會做的AI人工智慧實戰 (附120分鐘影音教學/範例程式) (2版)

Python 機器學習與深度學習特訓班:看得懂也會做的AI人工智慧實戰 (附120分鐘影音教學/範例程式) (2版)

類似書籍推薦給您

內容簡介 國內外最具代表性案例,9大專題實戰、15個分類實例 Google Colab、Microsoft Azure兩大雲端應用,人臉辨識、自然語言、 文字識別、語音轉換、分析預測、物件自動標示、影像辦識真正實練, 從資料收集整理、模型訓練調整,檢測修正到產出全面解秘!   資料科學(Data Science)技術崛起後,人工智慧(Artificial Intelligence)、機器學習(Machine Learning)與深度學習(Deep Learning)儼然成為電腦科學最熱門的話題。其實,人工智慧的應用早已出現在我們生活周遭,如即時車牌影像辨識,以及智慧型手機中的臉部指紋辨識解鎖、影像轉文字翻譯、智慧語音助理…等。   在人工智慧領域中最重要也最適合作為入門的程式語言非Python莫屬。本書就以TensorFlow、Keras為基底,運用Python進行實作,深入人工智慧技術,掌握機器學習與深度學習的真正強大應用。   程式人、工程師挑戰人工智慧最佳學習地圖   由類神經網路基礎到AI應用實戰   訓練、模型、預測、辨識、分析與驗證   全面深入機器學習與深度學習技術核心   ■打造專屬Python、TensorFlow與Keras最強開發環境。       ■圖解簡化複雜難懂的類神經網路觀念,涵蓋多層感知器(MLP)、卷積神經網路(CNN)與循環神經網路(RNN)。   ■整合最夯的人工智慧雲端開發平台:Google Colab,應用雲端提供的充沛資源,全面提升運算效能。     ■加碼最新的機器學習雲端應用平台:Microsoft Azure,連結功能強大、方向多元的Web API,豐富專業應用領域。   ■顛覆只重視理論或產生結果的傳統機器學習內容,實際挑戰從資料收集與準備、模型訓練與調整、檢測修正到結果產出的最完整機器學習實戰流程。   ■全面深入不同應用面向:   印刷文字辨識、手寫文字辨識、遠端圖片分析、本機圖片分析、辨識圖片地標或名人、臉部辨識、人臉比對、語言識別、文字翻譯、黑白照片上色、人臉情緒偵測、圖片物件偵測、人工智慧製作縮圖、圖片場景偵測、汽車型號及年份偵測、自動標示物件、資料走勢預測…   ■網羅國內外最具代表性案例:   手寫文字辨識、圖片分類、即時匯率分析、文字雲與文章自動摘要、YouTube影片加上字幕、股票走勢分析、臉部辨識登入系統、擷取車牌、即時車牌影像辨識…等,進行有系統而扎實的真正演練。   ■一次領略機器學習與深度學習的重要關鍵話題:   TensorFlow、Keras、Anaconda、Spyder、Jupyter Notebook、CUDA、cuDNN、MLP、Mnist、CNN、RNN、LSTM、Colab、Azure、Cognitive Services、Computer Vision、Face API、Language API、Text Analytics、Translator Text、Algorithmia、Jieba、wordcloud、SpeechRecognition、Aegisub、twstock、plotly、SQLite、SQLite Database Browser、Haar…   ■針對專案實戰提供關鍵影音輔助教學,加速學習效率。   超值學習資源:120分鐘關鍵影音教學/範例程式檔/一探演算法雲端寶庫:Algorithmia教學PDF 感謝讀者好評   “很棒的書,我完全沒有深度學習和機器學習的任何知識,只有Python的基礎知識,也覺得書中的說明很快就讓我了解了。” --abedul   “此書把繁雜的演算法理論以圖像化的方式呈現,可以幫助我們快速了解深度學習的核心概念,讓學習門檻降低許多,而且還提供了很多實用的實作範例,是一本入門深度學習的好書…” --Victor 目錄 01 打造開發環境: TensorFlow和Keras 1.1 人工智慧、機器學習和深度學習的關係 1.2 什麼是機器學習? 1.3 什麼是深度學習? 1.4 TensorFlow與Keras 1.5 建置Anaconda開發環境 1.6 TensorFlow及Keras安裝 1.7 設定TensorFlow的GPU支援 02 機器學習起點:多層感知器(MLP) 2.1 認識多層感知器(MLP) 2.2 認識Mnist資料集 2.3 多層感知器模型資料預處理 2.4 多層感知器實戰:Mnist手寫數字圖片辨識 2.5 模型儲存和載入 2.6 模型權重的儲存和載入 2.7 建立多個隱藏層 03 影像識別神器:卷積神經網路(CNN) 3.1 卷積神經網路(CNN)基本結構 3.2 認識Kaggle Cats and Dogs Dataset資料集 3.3 卷積神經網路實戰:圖片辨識 3.4 模型權重的儲存和載入 04 自然語言處理利器:循環神經網路(RNN) 4.1 循環神經網路(RNN)基本結構 4.2 認識外幣匯率查詢資料集 4.3 循環神經網路外幣匯率預測 4.4 模型權重的儲存和載入 4.5 長短期記憶(LSTM) 05 機器學習雲端開發工具:Google Colab 5.1 Colab:功能強大的虛擬機器 5.2 在Colab中進行機器學習 06 體驗機器學習雲端平台:Microsoft Azure 6.1 專題方向 6.2 電腦視覺資源 6.3 臉部辨識資源 6.4 文字語言翻譯資源 07 臉部辨識登入系統:Azure臉部辨識應用 7.1 專題方向 7.2 Azure臉部客戶端程式庫 7.3 刷臉登入系統 08 自然語言處理:文字雲與文章自動摘要 8.1 專題方向 8.2 Jieba模組 8.3 文字雲 8.4 文章自動摘要 09 語音辨識應用:YouTube影片加上字幕 9.1 專題方向 9.2 語音辨識 9.3 影片字幕製作 10 投資預測實證:股票走勢分析 10.1 專題方向 10.2 台灣股市資訊模組 10.3 股票分析 10.4 股票預測 11 自動標示物件:用Haar特徵分類器擷取車牌 11.1 專題方向 11.2 準備訓練Haar特徵分類器資料 11.3 建立車牌號碼Haar特徵分類器模型 11.4 使用Haar特徵分類器模型 12 無所遁形術:即時車牌影像辨識 12.1 專題方向 12.2 車牌號碼機器學習訓練資料 12.3 建立車牌辨識系統

原價: 520 售價: 442 現省: 78元
立即查看
機器學習與AI人工智慧於稽核應用實例演練(附試用教育版軟體+教學演練資料)

機器學習與AI人工智慧於稽核應用實例演練(附試用教育版軟體+教學演練資料)

類似書籍推薦給您

ChatGPT引發了對AI人工智慧的熱烈討論。未來十年,AI將驅動產業發展,幾乎所有現代產業都將與AI緊密相關。機器學習使得事前審計成為可能,但撰寫或調整人工智慧演算法對大多數人而言仍很困難,因此需要簡單易用的工具來輔助。 本教材以實務案例演練為主,深入淺出,讓學員了解如何在稽核領域有效運用機器學習等AI技術。經由國際電腦稽核教育協會(ICAEA)認證,由專業稽核實務顧問群精心編寫,提供完整實例演練資料,並可申請取得AI稽核軟體JCAATs教育版。學員可透過簡單的指令,應用內建的機器學習演算法(如決策樹、K近鄰算法、邏輯斯回歸、隨機森林、支持向量機),輕鬆進行大數據資料分析,實現風險預測性稽核。 學員將學會評估機器學習訓練模型的有效性,並掌握多元評估指標的正確使用方法。同時,學習如何處理資料缺失或不對稱的情況,以實現稽核目標。歡迎會計師、內部稽核、各階管理者共同參與學習,成為AI人工智慧新稽核的專家,提前預警並避免各項風險。 ◎代理經銷 白象文化

原價: 1200 售價: 900 現省: 300元
立即查看
從程式員到 AI 專家|寫給程式員的人工智慧與機器學習指南 (1版)

從程式員到 AI 專家|寫給程式員的人工智慧與機器學習指南 (1版)

類似書籍推薦給您

內容簡介   如果你想從程式員轉職為AI專家,本書是理想的起點。本書來自Laurence Moroney的成功AI課程,將會帶著你親自動手寫程式,讓你充滿信心地學習重要的主題,你要做的,只是用Python和它的資料表示法及陣列處理法來做實驗。   你會學到如何實作機器學習最常見的場景,包括電腦視覺、自然語言處理(NLP),以及在web、行動設備、雲端與嵌入式等執行環境中建立序列模型。大多數的機器學習書籍在一開始都會展示大量且令人生畏的高等數學,但這本書提供實用的課程,直接帶你編寫實用的程式。   • 透過範例程式了解機器學習的基本知識   • 使用TensorFlow為各種場景建模模型   • 用只有一個神經元的神經網路建構模型   • 實作電腦視覺,包括在圖像中偵測特徵   • 使用NLP將單字和句子基元化及組成序列   • 將模型植入Android與iOS設備   • 使用TensorFlow Serving,讓模型透過web或雲端提供服務 名人推薦   「本書使用TensorFlow徹底教你了解及實作機器學習與人工智慧模型。」   —Jialin Huang博士   微軟資料與應用科學家   「Laurence Moroney一直是讓TensorFlow成為全球AI框架龍頭的主力,我很榮幸可以透過deeplearning.ai與Coursera來協助他指導TensorFlow。希望你在學習TensorFlow的過程中一切順利。有Laurence當你的導師,你將展開一場偉大的冒險旅程。」   —Andrew Ng   deeplearning.ai創辦人 目錄 推薦序 前言 【第一部分 建構模型】 第1章 TensorFlow 簡介 第2章 電腦視覺簡介 第3章 從基礎晉級:偵測圖像中的特徵 第4章 使用 TensorFlow Datasets 來取得公開的資料組 第5章 自然語言處理簡介 第6章 使用 embedding 來以程式表達情緒 第7章 用遞迴神經網路來處理自然語言 第8章 使用 TensorFlow 來創造文本 第9章 了解序列和時間序列資料 第10章 建立 ML 模型來預測序列 第11章 使用摺積和遞迴方法來製作序列模型 【第二部分 使用模型】 第12章 TensorFlow Lite 簡介 第13章 在 Android app 使用 TensorFlow Lite 第14章 在 iOS app 裡使用 TensorFlow Lite 第15章 TensorFlow.js 簡介 第16章 用 TensorFlow.js 製作電腦視覺的設計技術 第17章 將 Python 模型轉換成 JavaScript 來重複使用它 第18章 遷移學習,使用 JavaScript 第19章 用 TensorFlow Serving 來部署 第20章 AI 道德、公平性和隱私

原價: 680 售價: 578 現省: 102元
立即查看
圖解機器學習、人工智慧與人類未來 (1版)

圖解機器學習、人工智慧與人類未來 (1版)

類似書籍推薦給您

原價: 300 售價: 255 現省: 45元
立即查看
資料探勘:人工智慧與機器學習發展以SPSS Modeler為範例

資料探勘:人工智慧與機器學習發展以SPSS Modeler為範例

類似書籍推薦給您

原價: 690 售價: 587 現省: 103元
立即查看