書名: Artificial Intelligence: A Guide to Intelligent Systems (4版)
作者: Michael Negnevitsky
版次: 4
ISBN: 9781292730851
出版社: Pearson
出版日期: 2024/09
#資訊
#AI人工智慧與機器學習
定價: 1680
售價: 1596
庫存: 庫存: 1
LINE US! 詢問這本書 團購優惠、書籍資訊 等

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

詳細資訊

【簡介】 What are the principles behind intelligent systems? How are they built? What are intelligent systems useful for? How do we choose the right tool for the job? These questions are answered by Michael Negnevitsky’s Artificial Intelligence: A Guide to Intelligent Systems. Unlike many books on computer intelligence, which use complex computer science terminology and are crowded with complex matrix algebra and differential equations, this text demonstrates that the ideas behind intelligent systems are simple and straightforward. This text assumes little or no programming experience as it tackles topics like expert systems, fuzzy systems, artificial neural networks, evolutionary computation, knowledge engineering, and data mining. 【目錄】 Introduction to Intelligent Systems 1.1 Intelligent Machines, or What Machines Can Do 1.2 The History of Artificial Intelligence, or From the ‘Dark Ages’ to Knowledge-based Systems 1.3 Generative AI 1.4 Summary Questions for Review References Expert Systems 2.1 Introduction, or Knowledge Representation Using Rules 2.2 The Main Players in the Expert System Development Team 2.3 Structure of a Rule-based Expert System 2.4 Fundamental characteristics of an expert system 2.5 Forward Chaining and Backward Chaining Inference Techniques 2.6 MEDIA ADVISOR: A Demonstration Rule-based Expert System 2.7 Conflict Resolution 2.8 Uncertainty Management in Rule-based Expert Systems 2.9 Advantages and Disadvantages of Rule-based Expert systems 2.10 Summary Questions for Review References Fuzzy Systems 3.1 Introduction, or What Is Fuzzy Thinking? 3.2 Fuzzy Sets 3.3 Linguistic Variables and Hedges 3.4 Operations of Fuzzy Sets 3.6 Fuzzy Inference 3.7 Building a Fuzzy Expert System 3.8 Summary Questions for Review References Frame-based Systems and Semantic Networks 4.1 Introduction, or What Is a Frame? 4.2 Frames as a Knowledge Representation Technique 4.3 Inheritance in Frame-based Systems 4.4 Methods and Demons 4.5 Interaction of Frames and Rules 4.6 Buy Smart: A Frame-based Expert System 4.7 The Web of Data 4.8 RDF – Resource Description Framework and RDF Triples 4.9 Turtle, RDF Schema and OWL 4.10 Querying the Semantic Web with SPARQL 4.11 Summary Questions for Review References Artificial Neural Networks 5.1 Introduction, or How the Brain Works 5.2 The Neuron as a Simple Computing Element 5.3 The Perceptron 5.4 Multilayer Neural Networks 5.5 Accelerated Learning in Multilayer Neural Networks 5.6 The Hopfield Network 5.7 Bidirectional Associative Memory 5.8 Self-organising Neural Networks 5.9 Reinforcement Learning 5.10 Summary Questions for Review References Deep Learning and Convolutional Neural Networks 6.1 Introduction, or How “Deep” Is a Deep Neural Network? 6.2 Image Recognition or How Machines See the World 6.3 Convolution in Machine Learning 6.4 Activation Functions in Deep Neural Networks 6.5 Convolutional Neural Networks 6.6 Back-propagation Learning in Convolutional Networks 6.7 Batch Normalisation 6.8 Summary Questions for Review References Evolutionary Computation 7.1 Introduction, or Can Evolution Be Intelligent? 7.2 Simulation of Natural Evolution 7.3 Genetic Algorithms 7.4 Why Genetic Algorithms Work 7.5 Maintenance Scheduling with Genetic Algorithms 7.6 Genetic Programming 7.7 Evolution Strategies 7.8 Ant Colony Optimisation 7.9 Particle Swarm Optimisation 7.10 Summary Questions for Review References Hybrid Intelligent Systems 8.1 Introduction, or How to Combine German Mechanics with Italian Love 8.2 Neural Expert Systems 8.3 Neuro-Fuzzy Systems 8.4 ANFIS: Adaptive Neuro-Fuzzy Inference System 8.5 Evolutionary Neural Networks 8.6 Fuzzy Evolutionary Systems 8.7 Summary Questions for Review References Knowledge Engineering 9.1 Introduction, or What Is Knowledge Engineering? 9.2 Will an Expert System Work for My Problem? 9.3 Will a Fuzzy Expert System Work for My Problem? 9.4 Will a Neural Network Work for My Problem? 9.5 Will a Deep Neural Network Work for My Problem? 9.6 Will Genetic Algorithms Work for My Problem? 9.7 Will Particle Swarm Optimisation Work for My Problem? 9.8 Will a Hybrid Intelligent System Work for My Problem? 9.9 Summary Questions for Review References Data Mining and Knowledge Discovery 10.1 Introduction, or What Is Data Mining? 10.2 Statistical Methods and Data Visualisation 10.3 Principal Components Analysis 10.4 Relational Databases and Database Queries 10.5 The Data Warehouse and Multidimensional Data Analysis 10.6 Decision Trees 10.7 Association Rules and Market Basket Analysis 10.8 Summary Questions for Review References Glossary Index

為您推薦

人工智慧:智慧型系統導論3/e (3版)

人工智慧:智慧型系統導論3/e (3版)

相關熱銷的書籍推薦給您

書名:人工智慧:智慧型系統導論(第三版) 作者:李聯旺 出版社:全華 ISBN:9789862800959

原價: 590 售價: 519 現省: 71元
立即查看
Artificial Intelligence: A Systems Approach from Architecture Principles to Deployment (MIT Lincoln Laboratory Series) Kindle Edition (1版)

Artificial Intelligence: A Systems Approach from Architecture Principles to Deployment (MIT Lincoln Laboratory Series) Kindle Edition (1版)

類似書籍推薦給您

【簡介】 The first text to take a systems engineering approach to artificial intelligence (AI), from architecture principles to the development and deployment of AI capabilities. Most books on artificial intelligence (AI) focus on a single functional building block, such as machine learning or human-machine teaming. Artificial Intelligence takes a more holistic approach, addressing AI from the view of systems engineering. The book centers on the people-process-technology triad that is critical to successful development of AI products and services. Development starts with an AI design, based on the AI system architecture, and culminates with successful deployment of the AI capabilities. Directed toward AI developers and operational users, this accessibly written volume of the MIT Lincoln Laboratory Series can also serve as a text for undergraduate seniors and graduate-level students and as a reference book. Key features: In-depth look at modern computing technologies Systems engineering description and means to successfully undertake an AI product or service development through deployment Existing methods for applying machine learning operations (MLOps) AI system architecture including a description of each of the AI pipeline building blocks Challenges and approaches to attend to responsible AI in practice Tools to develop a strategic roadmap and techniques to foster an innovative team environment Multiple use cases that stem from the authors’ MIT classes, as well as from AI practitioners, AI project managers, early-career AI team leaders, technical executives, and entrepreneurs Exercises and Jupyter notebook examples 【目錄】

原價: 2690 售價: 2690 現省: 0元
立即查看
Artificial Intelligence: A Modern Approach4/e (4版)

Artificial Intelligence: A Modern Approach4/e (4版)

類似書籍推薦給您

Artificial Intelligence: A Modern Approach, Global Edition ISBN13:9781292401133 出版社:Pearson Education Limited 作者:Peter Norvig;Stuart Russell 裝訂/頁數:平裝/1170頁 規格:25.3cm*20.4cm*3.4cm (高/寬/厚) 版次:4 出版日:2021/05/13 中國圖書分類:特殊電腦方法

原價: 1460 售價: 1387 現省: 73元
立即查看
ARTIFICIAL INTELLIGENCE FOR BUSINESS: A ROADMAP FOR GETTING STARTED WITH AI

ARTIFICIAL INTELLIGENCE FOR BUSINESS: A ROADMAP FOR GETTING STARTED WITH AI

類似書籍推薦給您

原價: 1278 售價: 1214 現省: 64元
立即查看
電子書 Artificial Intelligence and Big Data: The Birth of a New Intelligence Iafrate 9781786300836  2018 <JW>

電子書 Artificial Intelligence and Big Data: The Birth of a New Intelligence Iafrate 9781786300836 2018 <JW>

類似書籍推薦給您

原價: 3730 售價: 3730 現省: 0元
立即查看
AUTONOMOUS TRANSFORMATION - CREATING A MORE HUMAN FUTURE IN THE ERA OF ARTIFICIAL INTELLIGENCE

AUTONOMOUS TRANSFORMATION - CREATING A MORE HUMAN FUTURE IN THE ERA OF ARTIFICIAL INTELLIGENCE

類似書籍推薦給您

原價: 958 售價: 910 現省: 48元
立即查看