為您推薦
類似書籍推薦給您
類似書籍推薦給您
The second edition of this work, now with the expanded title of Design of Electromechanical and Combination Products, covers the design and development of electromechanical products, updated throughout to focus not only on an Agile Systems approach but also its application to disposables and consumables. Providing a practical set of guidelines and thorough examination of best practices, this book focuses on cutting-edge research on sustainability of electromechanical and combination products. Key Features Presents the design, development, and life cycle management of electromechanical and combination products Provides a practical set of guidelines and best practices for world-class design Explains the role of costing and pricing in product design Covers Design for X and its role in product life-cycle management Examines the dynamics of cross-functional design and product development teams Develops DHF and DMR as tools and inherent components of configuration management Includes numerous real-world examples of electromechanical and combination product designs This book is intended for scientists, engineers, designers, and technical managers, and provides a gateway to developing a product’s design history file (DHF) and device master record (DMR). These tools enable the design team to communicate a product’s design, manufacturability, and service procedures with various cross-functional teams.
類似書籍推薦給您
DESCRIPTION Electromechanical Coupling Theory, Methodology and Applications for High-Performance Microwave Equipment Electromechanical Coupling Theory, Methodology, and Applications for High-Performance Microwave Equipment is an authoritative and up-to-date guide to the structural, mechanical, and electrical aspects of electromechanical coupling. Addressing control, electromagnetism, and structural engineering, this comprehensive reference covers the electromechanical coupling of high-performance microwave electronic equipment (MEE), such as antennas, radar, large radio telescopes, and telecommunication and navigation equipment. The book is divided into four main sections, beginning with an introduction to electromechanical coupling (EMC) theory and a detailed description of the multi-field coupling model (MFCM) and the influence mechanism (IM) of nonlinear factors of antenna-servo-feeder systems on performance. Subsequent sections discuss MFCM- and IM-based design methodology, EMC-based measurement and testing, computer software for coupling analysis and design of electronic equipment, and various engineering applications of EMC theory and the IM of typical electronic equipment. In addition, the book: Discusses information and data transfer in electromagnetic fields, mechanical and structural deformation fields, and temperature fields Explains how high-performance microwave electronic equipment differs from traditional mechanical equipment Addresses EMC-based and general design-vector based optimization of electronic equipment design Describes applications such as a gun-guided radar system for warships and a large-diameter antenna for moon exploration Includes evaluation criteria to validate MFCM/IM design theory and methodology Electromechanical Coupling Theory, Methodology, and Applications for High-Performance Microwave Equipment is essential reading for circuit designers, microwave engineers, researchers working with high-frequency microwave engineering, and engineers working with integrated circuits in radar, communications, IoT, antenna engineering, and remote sensing.
類似書籍推薦給您
Discover the analytical foundations of electric machine, power electronics, electric drives, and electric power systems In Introduction to the Analysis of Electromechanical Systems, an accomplished team of engineers delivers an accessible and robust analysis of fundamental topics in electrical systems and electrical machine modeling oriented to their control with power converters. The book begins with an introduction to the electromagnetic variables in rotatory and stationary reference frames before moving onto descriptions of electric machines. The authors discuss direct current, round-rotor permanent-magnet alternating current, and induction machines, as well as brushless direct current and induction motor drives. Synchronous generators and various other aspects of electric power system engineering are covered as well, showing readers how to describe the behavior of electromagnetic variables and how to approach their control with modern power converters. Introduction to the Analysis of Electromechanical Systems presents analysis techniques at an introductory level and at sufficient detail to be useful as a prerequisite for higher level courses. It also offers supplementary materials in the form of online animations and videos to illustrate the concepts contained within. Readers will also enjoy: A thorough introduction to basic system analysis, including phasor analysis, power calculations, elementary magnetic circuits, stationary coupled circuits, and two- and three-phase systems Comprehensive explorations of the basics of electric machine analysis and power electronics, including switching-circuit fundamentals, conversion, and electromagnetic force and torque Practical discussions of power systems, including three-phase transformer connections, synchronous generators, reactive power and power factor correction, and discussions of transient stability Perfect for researchers and industry professionals in the area of power and electric drives, Introduction to the Analysis of Electromechanical Systems will also earn its place in the libraries of senior undergraduate and graduate students and professors in these fields.