定價: | ||||
售價: | 399元 | |||
庫存: | 已售完 | |||
LINE US! | ||||
此書為本公司代理,目前已售完,有需要可以向line客服詢問進口動向 | ||||
付款方式: | 超商取貨付款 |
![]() |
|
信用卡 |
![]() |
||
線上轉帳 |
![]() |
||
物流方式: | 超商取貨 | ||
宅配 | |||
門市自取 |
為您推薦
其他會員也一起購買
Fourier Analysis—An Introduction 系列名:Princeton Lectures in Analysis, Volume 1 ISBN13:9780691113845 替代書名:Fourier Analysis 出版社:Princeton Univ Pr 作者:Elias M. Stein; Rami Shakarchi 裝訂:精裝 規格:24.1cm*16.5cm*1.9cm (高/寬/厚) 出版日:2003/03/17 內容簡介 This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
類似書籍推薦給您
類似書籍推薦給您
類似書籍推薦給您
【簡介】 Using the dichotomy of structure and pseudorandomness as a central theme, this accessible text provides a modern introduction to extremal graph theory and additive combinatorics. Readers will explore central results in additive combinatorics-notably the cornerstone theorems of Roth, Szemerédi, Freiman, and Green-Tao-and will gain additional insights into these ideas through graph theoretic perspectives. Topics discussed include the Turán problem, Szemerédi's graph regularity method, pseudorandom graphs, graph limits, graph homomorphism inequalities, Fourier analysis in additive combinatorics, the structure of set addition, and the sum-product problem. Important combinatorial, graph theoretic, analytic, Fourier, algebraic, and geometric methods are highlighted. Students will appreciate the chapter summaries, many figures and exercises, and freely available lecture videos on MIT OpenCourseWare. Meant as an introduction for students and researchers studying combinatorics, theoretical computer science, analysis, probability, and number theory, the text assumes only basic familiarity with abstract algebra, analysis, and linear algebra. 【目錄】
類似書籍推薦給您
類似書籍推薦給您