定價: | ||||
售價: | 6800元 | |||
庫存: | 已售完 | |||
LINE US! | ||||
此書為本公司代理,目前已售完,有需要可以向line客服詢問進口動向 | ||||
付款方式: | 超商取貨付款 |
![]() |
|
信用卡 |
![]() |
||
線上轉帳 |
![]() |
||
物流方式: | 超商取貨 | ||
宅配 | |||
門市自取 |
為您推薦
類似書籍推薦給您
This book is the third volume in the New Era Electronics lecture notes series, a compilation of volumes defining the important concepts tied to the electronics transition happening in the 21st century. The material is adapted from a unique course that connects three diverse fields - statistical mechanics, neural networks and quantum computing - using the unifying concept of a state-space with 2N dimensions defined by N binary bits. First, the seminal concepts of statistical mechanics, developed to describe natural interacting systems, are described. Then, these concepts are connected to engineered interacting systems like Boltzmann Machines (BM), which are cleverly designed to solve problems in machine learning. Finally, we connect to engineered quantum systems, stressing the key role of quantum interference in distinguishing them from classical systems like BM. Assuming only a basic background in differential equations and linear algebra, this book is accessible to broader audiences across its described topics, including students in physics, engineering and computing, as well as professionals working actively in the technical fields looking for a primer to unconventional computing.
類似書籍推薦給您
類似書籍推薦給您
【簡介】 Providing a graduate-level introduction to discrete probability and its applications, this book develops a toolkit of essential techniques for analysing stochastic processes on graphs, other random discrete structures, and algorithms. Topics covered include the first and second moment methods, concentration inequalities, coupling and stochastic domination, martingales and potential theory, spectral methods, and branching processes. Each chapter expands on a fundamental technique, outlining common uses and showing them in action on simple examples and more substantial classical results. The focus is predominantly on non-asymptotic methods and results. All chapters provide a detailed background review section, plus exercises and signposts to the wider literature. Readers are assumed to have undergraduate-level linear algebra and basic real analysis, while prior exposure to graduate-level probability is recommended. This much-needed broad overview of discrete probability could serve as a textbook or as a reference for researchers in mathematics, statistics, data science, computer science and engineering. 【目錄】
類似書籍推薦給您
類似書籍推薦給您
Probabilistic Machine Learning 系列名:Adaptive Computation and Machine Learning series ISBN13:9780262046824 出版社:Mit Pr 作者:Kevin P. Murphy 裝訂/頁數:精裝/864頁 出版日:2022/02/01