書名: 機器學習開發神器!Google Cloud Platform 雲端開發應用超入門 (1版)
作者: 阿佐志保、中井悅司
譯者: 林子政
版次: 1
ISBN: 9789863126133
出版社: 旗標
#資訊
#AI人工智慧與機器學習
#雲端計算與大數據
定價: 490
售價: 441
庫存: 庫存: 1
LINE US! 詢問這本書 團購優惠、書籍資訊 等

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

詳細資訊

內容簡介 伴隨大數據的崛起和 AI 技術的演進,對於當前所有的開發人員,我們會誠心建議採用公有雲服務來佈署應用程式,不僅享有優質穩定的託管維護服務,更重要的是可靈活運用的先進虛擬技術與超高運算效能,更是你不可或缺的開發神器。而在眾多公有雲服務中,GCP (Google Cloud Platform) 公認是最容易上手。你或許會在網路上看到 Google Cloud Platform 代理商的廣告,不外乎「簡單免費、輕鬆佈署、彈性應用、隨插即用」等口號標語,不過雲端開發和傳統的開發環境仍有不小的差異,實務上的操作絕不可能一帆風順。 本書不是教你依樣畫葫蘆的操作手冊,我們會先說明雲端環境建構 / 運行等相關的基礎知識,包括虛擬平台、虛擬網路、容器、微服務...等,接著再介紹 Google Cloud Platform 提供的主要服務功能和特性,再以實際的範例程式,一步步建構、組合出自己的系統。 而本書最終也會帶你活用 GCP 的 Cloud Vision API 和 Cloud Translation API 等 AI 服務,並利用最新的 Cloud MLE 自己訓練機器學習模型,讓你輕鬆擁抱各種最新技術與服務,為應用程式擴展更多可能性。 本書特色 : ◎快速建構自己的 GCP 雲端虛擬主機 ◎Docker/Kubernetes 容器與微服務應用 ◎結合 CloudSQL 打造全時運作的 Web 服務 ◎透過 Cloud ML Engine 線上訓練機器學習模型 ◎直接用 ML API 打造即時影像特徵擷取 ◎雲端資料儲存、權限控管與流量平衡 ◎全面導入 Python 程式範例實作:線上遊戲製作、線上留言板、機器學習 MNIST 手寫辨識、即時影像特徵擷取、貼圖網站... 產品目錄 第一章:Google Cloud 雲端服務 第二章:架構 Web 應用程式執行環境 第三章:架構穩健的 Web 應用程式 第四章:在容器執行環境建構微服務架構 第五章:使用 Google Cloud 的機器學習服務 附錄A:Stackdriver 系統操作 附錄B:Cloud IAM 帳號管理 附錄C:取得 GCP 最新技術資訊 附錄D:Linux 基礎及 vi 編輯器

為您推薦

人工智慧:智慧型系統導論3/e (3版)

人工智慧:智慧型系統導論3/e (3版)

相關熱銷的書籍推薦給您

書名:人工智慧:智慧型系統導論(第三版) 作者:李聯旺 出版社:全華 ISBN:9789862800959

原價: 590 售價: 519 現省: 71元
立即查看
設計機器學習系統: 迭代開發生產環境就緒的ML程式 (1版)

設計機器學習系統: 迭代開發生產環境就緒的ML程式 (1版)

類似書籍推薦給您

特色 「簡而言之,這是關於如何在公司構建、部署和擴展機器學習模型以獲得最大影響的最佳書籍。 」 —Josh Wills WeaveGrid軟體工程師和前任Slack資料工程總監 「在蓬勃發展但混亂的生態系統中,提供了ML從端到端的原則性視角,既是地圖又是指南針;大型科技公司內外的從業者必讀。」 —Jacopo Tagliabue Coveo人工智慧總監 機器學習系統既複雜又獨特,複雜之處在於系統組件繁多,並涉及許多不同的持份者。獨特之處在於系統依賴資料,且資料在不同使用案例中大有不同。在本書,您將學習一種整體方法來設計可靠、可擴展、可維護,並能適應不斷變化環境和業務需求的機器學習系統。 Claypot AI的聯合創始人、作者Chip Huyen考慮了每項設計決策—如何處理和創建訓練資料、使用哪些功能、重新訓練模型的頻率以及監控範圍,讓系統全面達標。本書提出的迭代框架結合實際案例研究,案例背後具大量參考文獻支持。 本書將幫助您應對以下場景: ‧規劃資料並選擇正確的指標來解決業務問題 ‧自動化流程以持續開發、評估、部署和更新模型 ‧開發監控系統,以快速檢測和解決模型在生產環境可能遇到的問題 ‧構建跨用例服務的ML平台 ‧開發負責任的機器學習系統 作者 Chip Huyen 是實時機器學習平台Claypot AI的聯合創辦人。她曾於NVIDIA,Netflix,及Snorkel AI工作,從中幫助了全球最大型的機構開發和部署ML系統。Chip以自己在斯坦福大學任教的課程「CS 329s:機器學習系統設計」作為本書藍本。 目錄 前言 第1章 機器學習系統概覽 第2章 機器學習系統設計簡介 第3章 資料工程基礎 第4章 訓練資料 第5章 特徵工程 第6章 模型開發和離線評估 第7章 模型部署和預測服務 第8章 資料分布轉移和監控 第9章 在生產中持續學習和測試 第10章 MLOps 的基礎設施和工具 第11章 涉及人類的機器學習 結語 索引

原價: 780 售價: 663 現省: 117元
立即查看
從機器學習到人工智慧|寫給Android/iOS程式師的ML/AI開發指南

從機器學習到人工智慧|寫給Android/iOS程式師的ML/AI開發指南

類似書籍推薦給您

內容簡介   幫助Android/iOS開發者了解如何應用AI/機器學習技術開發app   如果無處可用,AI什麼都不是。在人手一機的時代裡,如何應用AI已經成為行動裝置App開發人員的必修課程。本書是你在主流行動裝置平台(iOS與Android)上應用機器學習技術開發相關app的最佳指南。   本書介紹機器學習的相關技術與工具,並引導你應用ML Kit、TensorFlow Lite與Core ML等工具,開發電腦視覺與文字辨識等應用機器學習技術的Android/iOS應用程式。   .介紹可以應用在行動裝置上的AI/ML相關技術   .建立為iOS和Android的機器學習模型   .應用ML Kit與TensorFlow Lite開發Android/iOS應用程式   .如何依據需求選擇技術與工具,如雲端或裝置端的取捨,以及API的選擇   .了解機器學習技術應用的上的隱私與道德考量 目錄 第一章 人工智慧 & 機器學習簡介 第二章 電腦視覺簡介 第三章 ML Kit 簡介 第四章 善用 ML Kit的電腦視覺Android App 第五章 善用 ML Kit的文字處理Android App 第六章 善用 ML Kit的電腦視覺iOS App 第七章 善用 ML Kit的文字處理iOS App 第八章 深入理解 TensorFlow Lite 第九章 建立自定義模型 第十章 使用自定義模型的 Android App 第十一章 使用自定義模型的 iOS App 第十二章 用 Firebase 來協助 App 產品化 第十三章 使用 Create ML 與 Core ML 的 iOS App 第十四章 行動 App 存取雲端模型 第十五章 行動 App 的道德面、公平性與隱私權考量

原價: 620 售價: 527 現省: 93元
立即查看
AI開發的機器學習系統設計模式 (1版)

AI開發的機器學習系統設計模式 (1版)

類似書籍推薦給您

內容簡介   幫助您更了解如何實務開發中應用機器學習技術   本書是機器學習系統設計模式的集合,範例使用的平台是Docker和Kubernetes,以確保程式碼的可重複執行。本書描述機器學習從訓練、評估和QA,到發布和運行推理器的順序,以及架構和代碼。藉由本書的指引,能夠幫助您更有效地使用機器學習的技術,將其應用在實際的系統開發中。   本書可以幫助您:   .了解如何MLOps這種機器學習付諸實用的開發維護方法   .了解建置機器學習系統的方法,包括專為機器學習設計的系統(機器學習管線或實驗管理)與專為使用機器學習設計的系統(發佈或推論器),以實現MLOps   .了解改善機器學習系統品質的方法,以及如何透過後續的維護改善模型 來自讀者的讚譽   "蘊含了MLOps的精華"   "詳細介紹了如何開發在商業環境中應用機器學習的系統"   "資訊豐富,是開發大型系統極佳的參考資料" 目錄 Part I|機器學習與MLOps CHAPTER 1 何謂機器學習系統? 1.1 機器學習、MLOps、系統 1.2 目標是打造方便使用者的機器學習 1.3 機器學習系統所需的東西 1.4 讓機器學習系統模式化 1.5 本書的編排方式 Part II|建立機器學習系統 CHAPTER 2 建置模型 2.1 建置模型 2.2 反面模式|Only me 模式 2.3 專案、模型與版本管理 2.4 管線學習模式 2.5 批次學習模式 2.6 反面模式|複雜管線模式 CHAPTER 3 發佈模型 3.1 學習環境與推論環境 3.2 反面模式|版本不一致模式 3.3 模型的發行與推論器的運作 3.4.1 用例 3.5 Model loader 模式 3.6 模型的發行與水平擴充 CHAPTER 4 建立推論系統 4.1 為什麼要建立系統 4.2 Web Single 模式 4.3 同步推論模式 4.4 非同步推論模式 4.5 批次推論模式 4.6 前置處理推論模式 4.7 微服務串聯模式 4.8 微服務並聯模式 4.9 時間差推論模式 4.10 推論快取模式 4.11 資料快取模式 4.12 推論器範本模式 4.13 Edge AI模式 4.14 反面模式|Online Big Size 模式 4.15 反面模式|All in One 模式 Part III|品質、維護、管理 CHAPTER 5 維護機器學習系統 5.1 機器學習的應用 5.2 推論日誌模式 5.3 推論監控模式 5.4 反面模式|無日誌資料模式 5.5 反面模式|孤兒模式 CHAPTER 6 維持機器學習系統的品質 6.1 機器學習系統的品質與維護 6.2 機器學習系統的正常性評估指標 6.3 負載測試模式 6.4 推論斷路器模式 6.5 Shadow A/B測試模式 6.6 線上A/B測試模式 6.7 參數基礎推論模式 6.8 條件分歧推論模式 6.9 反面模式|純離線模式 CHAPTER 7 End-to-End 的 MLOps 系統設計 7.1 課題與手法 7.2 需求預測系統的範例 7.3 內容上傳服務的範例 7.4 總結

原價: 620 售價: 527 現省: 93元
立即查看
機器學習實務:資料科學工作流程與應用程式開發及最佳化

機器學習實務:資料科學工作流程與應用程式開發及最佳化

類似書籍推薦給您

序 前言 關於作者 【PART I基本結構】 chapter 01資料科學家的角色 1.1 介紹 1.2 資料科學家的角色 1.3 結論 chapter 02專案工作流程 2.1 介紹 2.2 資料團隊背景 2.3 敏捷開發與產品專注 2.4 結論 chapter 03誤差量化 3.1 介紹 3.2 量化測量值誤差 3.3 採樣誤差 3.4 誤差傳播 3.5 結論 chapter 04資料編碼與預處理 4.1 介紹 4.2 簡單文字處理 4.3 資訊損失 4.4 結論 chapter 05假設檢定 5.1 介紹 5.2 何謂假設? 5.3 誤差類型 5.4 P 值與信賴區間 5.5 多重測試與 "P-hacking" 5.6 範例 5.7 規劃與背景 5.8 結論 chapter 06資料視覺化 6.1 介紹 6.2 分佈與摘要統計 6.3 時間序列圖 6.4 圖視覺化 6.5 結論 【PART II 演算法與架構】 chapter 07演算法與架構 7.1 介紹 7.2 架構 7.3 模型 7.4 結論 chapter 08比較 8.1 介紹 8.2 Jaccard 距離 8.3 MinHash 8.4 Cosine 相似度 8.5 馬氏距離 8.6 結論 chapter 09迴歸 9.1 介紹 9.2 線性最小平方 9.3 線性迴歸的非線性迴歸 9.4 隨機森林 9.5 結論 chapter 10分類與群集 10.1 介紹 10.2 邏輯迴歸 10.3 貝葉斯推論,單純貝葉斯 10.4 K 平均 10.5 領先特徵向量 10.6 貪婪 Louvain 10.7 最近鄰居 10.8 結論 chapter 11貝葉斯網路 11.1 介紹 11.2 因果圖、條件獨立、Markovity 11.3 D 分離與 Markov 性質 11.4 貝葉斯網路因果圖 11.5 模型適配 11.6 結論 chapter 12降維與潛在變項模型 12.1 介紹 12.2 先驗 12.3 因素分析 12.4 主成分分析 12.5 獨立成分分析 12.6 隱含狄利克雷分布 12.7 結論 chapter 13因果推論 13.1 介紹 13.2 實驗 13.3 觀察:一個例子 13.4 控制阻斷非因果路徑 13.5 機器學習估計量 13.6 結論 chapter 14進階機器學習 14.1 介紹 14.2 最佳化 14.3 神經網路 14.4 結論 【PART III 瓶頸與最佳化】 chapter 15硬體基礎知識 15.1 介紹 15.2 隨機存取記憶體 15.3 非揮發性/固定儲存 15.4 吞吐量 15.5 處理器 15.6 結論 chapter 16軟體基礎知識 16.1 介紹 16.2 換頁 16.3 編索引 16.4 顆粒度 16.5 強固性 16.6 擷取、轉換、載入 16.7 結論 chapter 17軟體架構 17.1 介紹 17.2 主從架構 17.3 N 層/服務導向架構 17.4 微服務 17.5 一大塊 17.6 實際案例(混合架構) 17.7 結論 chapter 18CAP 定理 18.1 介紹 18.2 一致性/同時性 18.3 可用性 18.4 分割容錯 18.5 結論 chapter 19邏輯網路拓撲節點 19.1 介紹 19.2 網路圖 19.3 負載平衡 19.4 快取 19.5 資料庫 19.6 佇列 19.7 結論 參考書

原價: 580 售價: 493 現省: 87元
立即查看
邊緣AI-使用NVIDIA Jetson Orin Nano開發具備深度學習、電腦視覺與生成式AI功能的ROS2機器人 (1版)

邊緣AI-使用NVIDIA Jetson Orin Nano開發具備深度學習、電腦視覺與生成式AI功能的ROS2機器人 (1版)

類似書籍推薦給您

【簡介】 內容簡介:★ NVIDIA DLI 深度學習機構白金級認證講師專業講解 ★ ★ 完整解析 NVIDIA Jetson 邊緣運算電腦,最新的 Jetson Orin Nano Super 算力飆升1.7倍!【Jetson Orin Nano Super】NVIDIA 執行長黃仁勳盛讚的1.7倍AI算力提升在這裡!【加速運算】NVIDIA Jetson 系列邊緣運算電腦,搭載 CUDA 與 TensorRT 加速技術,實現掌上高速運算的承諾。【立體機器視覺】整合 Intel RealSense 與 StereoLab ZED 景深攝影機,讓機器人擁有清晰的空間感知能力。【ROS2 作業系統】機器人智慧全面升級,輕鬆實現各種自動化任務。【生成式 AI 應用】在裝置端執行各種大語言、圖像、語音與 Cosmos 等多模態生成模型,讓無限創意在邊緣運算中展翅高飛! 【目錄】 章節說明:第 1 章 單板電腦與邊緣運算1.1 邊緣運算裝置1.2 單板電腦1.3 NVIDIA 線上資源1.4 NVIDIA Jetson 家族1.5 Jetson Orin Nano 開發套件開箱1.6 總結第 2 章 Jetson Orin Nano 初體驗2.1 Jetson Orin Nano 開機!2.2 基礎系統操作2.3 Jetson Orin Nano Super2.4 總結第 3 章 深度學習結合視覺辨識應用3.1 OpenCV 電腦視覺函式庫3.2 NVIDIA 深度學習視覺套件包3.3 總結第 4 章 整合深度視覺4.1 Intel RealSense 景深攝影機4.2 ZED 景深攝影機4.3 總結第 5 章 ROS2 機器人作業系統5.1 ROS / ROS25.2 NVIDIA Issac ROS5.3 安裝 ROS25.4 RK ROS2 移動平台5.5 ROS2 基本節點5.6 AI 節點5.7 進階應用5.8 總結第 6 章 生成式 AI 結合邊緣運算裝置6.1 淺談生成式 AI6.2 NVIDIA Jetson Generative AI lab6.3 總結

原價: 580 售價: 493 現省: 87元
立即查看