書名: DEEP LEARNING FOR PHYSICS RESEARCH
作者: ERDMANN
ISBN: 9789811237454
出版社: World Scientific
頁數: 300
定價: 2969
售價: 2821
庫存: 已售完
LINE US! 詢問這本書 團購優惠、書籍資訊 等
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

為您推薦

量子計算實戰

量子計算實戰

其他會員也一起購買

書名:量子計算實戰 出版社:碁峰 出版年月:201912 條碼:9789865023478 內容簡介 利用Python量子組合語言以及IBM的Q Experience編寫量子程式 在全新的量子計算領域發展演算法及程式。本書涵蓋幾個主題,例如量子電腦的物理特性:包括量子位元(qubit)、糾纏(entanglement)、邏輯閘電路,以及其與傳統電腦的區別。此外,《量子計算實戰》也利用IBM的Q Experience探討雲端的量子計算。討論的項目包括有:作曲家程式(composer)、量子分數、實驗、電路、模擬器、實際的量子裝置等等。讀者可以在雲端的實際量子裝置上面執行程式。 另外,本書也教你怎麼用QISKit(量子資訊軟體套件)、Python SDK、以及其他像QASM(量子組合語言)這類的API來寫量子程式。讀者將學會用這些語言編寫程式碼,並且以本地/雲端的模擬器或IBM的Q Experience提供的真實量子電腦來執行。最後,我們還會學到糾纏態、隨機數字產生、線性搜索、質因數分解及其他一些常見的量子演算法。並因而有機會探討糾纏貝爾狀態的內部機制、Grover線性搜索、Shor質因數分解,以及包含最佳化領域的其他一些演算法。 在學習過程中還會用魔方(Magic Square)來探討遊戲理論。魔方是類似量子傳心術的一個例子,身在其中的參與者互相分享糾纏態,並且可以被觀察出彼此之間有某種程度的通信機制存在。遊戲中Alice與Bob跟裁判員對賭,利用量子力學有辦法讓Alice跟Bob只贏不輸! 讀完本書後,讀者將理解此新興技術相較於傳統電腦,是如何實現了大規模的平行度及巨大的計算效能改善。並將具備編寫量子計算程式之能力—量子電腦被預期將取代資料中心的傳統電腦。 讀者將學習 ‧使用最早出現的網頁控制台:Q Experience作曲家程式,來打造視覺化的程式/實驗,並傳送到模擬器或雲端的真實裝置執行 ‧利用Q Experience REST API遠端執行程式 ‧寫出比傳統版本更強大的量子版本演算法 ‧建立Node.js REST客戶端程式,用來認證、列出遠端裝置、查詢量子處理器資訊、列出或執行雲端上的程式/實驗 ‧打造量子數字產生器:即帶有量子意涵的典型硬幣拋擲 ‧發掘量子遙傳:此演算法展示如何將一個量子位元或量子資訊的確切狀態,藉由傳統通信及發送/接收者之間的量子糾纏,從某處傳至他處 ‧以帶有量子意味、典型的戰艦遊戲一窺單一個量子位元的運作 ‧解決偽幣問題:這是個古典的謎題,探討在總共8枚硬幣的槓桿秤中,如何只用兩個步驟找出偽幣 作者介紹 作者簡介 Vladimir Silva 從Middle TN州立大學取得電腦科學碩士學位。他在IBM作為研究工程師工作五年,在這段期間獲得廣泛的分散與網格計算方面的經驗。 他擁有許多IT證照,包括OCP、MCSD、MCP,也幫IBM developerWorks寫過許多技術文章。他之前的著作包括《Grid Computing for Developers》(Charles River Media)、《Practical Eclipse Rich Client Platform》(Apress)、《Pro Android Games》(Apress)、《Advanced Android 4 Games》(Apress)。 身為狂熱的馬拉松跑者、而且在北卡全州已完成了16場賽事(迄本書寫作之時),在寫程式、寫作、或跑步之外的時間,他喜歡彈奏古典吉他以及思考像是量子力學這類很棒的事物。 目錄 Chapter 1 奇異又美妙的量子力學世界 Chapter 2 量子計算:細究真實背後的脈絡 Chapter 3 IBM Q Experience — 獨一無二的雲端量子計算平台 Chapter 4 QISKit — 用 Python 寫量子程式的絕佳 SDK Chapter 5 啟動引擎:從量子隨機數到遙傳,以及初探超密編碼 Chapter 6 玩轉量子遊戲 Chapter 7 利用量子力學的遊戲理論—你的贏面總比別人高 Chapter 8 更快速的搜尋,以及威脅非對稱密碼學基礎的 Grover 與 Shor 演算法

原價: 580 售價: 493 現省: 87元
立即查看
(舊版)(舊版)(特價書199) Problems & Solutions in Quantum Computing & Quantum Information 2004 (WS) 981-238-790-0

(舊版)(舊版)(特價書199) Problems & Solutions in Quantum Computing & Quantum Information 2004 (WS) 981-238-790-0

其他會員也一起購買

原價: 1050 售價: 200 現省: 850元
立即查看
Deep Learning: 用Python進行深度學習的基礎理論實作

Deep Learning: 用Python進行深度學習的基礎理論實作

其他會員也一起購買

書名:DEEP LEARNING|用PYTHON進行深度學習的基礎理論實作 出版社:歐萊禮 出版年月:201708 條碼:9789864764846 內容簡介 不走捷徑,幫助您真正搞懂「深度學習」的真義 這是一本與「深度學習」有關的書籍。從入門開始說明,一步一步帶領你瞭解深度學習必須具備的知識。本書可以幫助您了解:深度學習究竟是什麼?有何特色?根據何種原理來運作? 從零開始,由實做中學習 本書的目標是,盡量避免使用不瞭解內容的「黑盒子」,以基礎的知識為起點,以容易上手的Python撰寫程式,從動手實作的過程中,一步步深入瞭解深度學習。若以車用書籍來比喻這本書的話,這本書並不屬於汽車駕訓教材,而是希望能夠幫助您瞭解車子的原理,而非教您開車的方法。為了瞭解汽車的結構,必須試著打開車子的引擎蓋,將每個零件都拿起來觀察、操作看看。然後盡量用簡單的形狀,篩選出車子的核心部分,就像組合迷你模型般,製作出這台車子。本書的目標,就是透過製作車子的過程,讓你感受到自己實際可以製作出車子,進而熟悉與車子的相關技術。 本書特色: .利用最少的外部函式庫,使用Python,從零開始實際執行深度學習的程式。 .說明Python 的用法,讓Python 的初學者也能理解。 .實際執行Python 的原始碼,同時提供讀者手邊可以進行實驗的學習環境。 .從簡單的機器學習問題開始,到最後執行精密辨識影像的系統。 .以淺顯易懂的方式說明深度學習與神經網路理論。 .針對看似複雜的技術,如誤差反向傳播與卷積運算等,利用實際操作方式說明,幫助理解。 .介紹在執行深度學習時,有幫助且實用的技巧,包括決定學習率的方法、權重的預設值等。 .說明Batch Normalization、Dropout、Adam 等最近的趨勢與操作。 .為什麼深度學習很優秀,為什麼加深層數,就能提高辨識準確度,為什麼隱藏層很重要,仔細說明這些「為什麼」。 .介紹自動運作、產生影像、強化學習等深度學習的應用範例。 作者介紹 作者簡介 斎藤康毅 1984年生於長崎縣對馬,畢業於東京工業大學工學院,東京大學研究所學際情報學府學士課程修畢。現在於企業內從事與電腦視覺、機器學習有關的研究開發工作。1984年生於長崎縣對馬,畢業於東京工業大學工學院,東京大學研究所學際情報學府學士課程修畢。現在於企業內從事與電腦視覺、機器學習有關的研究開發工作。 目錄 第一章 Python入門 第二章 感知器 第三章 神經網路 第四章 神經網路的學習 第五章 誤差反向傳播法 第六章 與學習有關的技巧 第七章 卷積神經網路 第八章 深度學習 附錄A Softmax-with-Loss層的計算圖 參考文獻

原價: 580 售價: 493 現省: 87元
立即查看
DEEP LEARNING IN BIOLOGY AND MEDICINE

DEEP LEARNING IN BIOLOGY AND MEDICINE

其他會員也一起購買

原價: 3575 售價: 3396 現省: 179元
立即查看
Quantum Computing for Programmers  2022 <Cambridge>

Quantum Computing for Programmers 2022 <Cambridge>

其他會員也一起購買

Quantum Computing for Programmers ISBN13:9781009098175 出版社:Cambridge University Press 作者:Robert Hundt 裝訂/頁數:精裝/350頁 版次:1 出版日:2022/02/28

原價: 1460 售價: 1460 現省: 0元
立即查看
Deep Learning for 3D Vision Algorithms and Applications

Deep Learning for 3D Vision Algorithms and Applications

類似書籍推薦給您

【簡介】 3D deep learning is a rapidly evolving field that has the potential to transform various industries. This book provides a comprehensive overview of the current state-of-the-art in 3D deep learning, covering a wide range of research topics and applications. It collates the most recent research advances in 3D deep learning, including algorithms and applications, with a focus on efficient methods to tackle the key technical challenges in current 3D deep learning research and adoption, therefore making 3D deep learning more practical and feasible for real-world applications. This book is organized into five sections, each of which addresses different aspects of 3D deep learning. Section I: Sample Efficient 3D Deep Learning, focuses on developing efficient algorithms to build accurate 3D models with limited annotated samples. Section II: Representation Efficient 3D Deep Learning, deals with the challenge of developing efficient representations for dynamic 3D scenes and multiple 3D modalities. Section III: Robust 3D Deep Learning, presents methods for improving the robustness and reliability of deep learning models in real-world applications. Section IV: Resource Efficient 3D Deep Learning, explores ways to reduce the computation cost of 3D models and improve their efficiency in resource-limited environments. Section V: Emerging 3D Deep Learning Applications, showcases how 3D deep learning is transforming industries and enabling new applications for healthcare and manufacturing. This collection is a valuable resource for researchers and practitioners interested in exploring the potential of 3D deep learning. 【目錄】

原價: 5112 售價: 5112 現省: 0元
立即查看
DEEP LEARNING FOR TARGETED TREATMENTS: TRANSFORMATION IN HEALTHCARE

DEEP LEARNING FOR TARGETED TREATMENTS: TRANSFORMATION IN HEALTHCARE

類似書籍推薦給您

DESCRIPTION DEEP LEARNING FOR TREATMENTS The book provides the direction for future research in deep learning in terms of its role in targeted treatment, biological systems, site-specific drug delivery, risk assessment in therapy, etc. Deep Learning for Targeted Treatments describes the importance of the deep learning framework for patient care, disease imaging/detection, and health management. Since deep learning can and does play a major role in a patient’s healthcare management by controlling drug delivery to targeted tissues or organs, the main focus of the book is to leverage the various prospects of the DL framework for targeted therapy of various diseases. In terms of its industrial significance, this general-purpose automatic learning procedure is being widely implemented in pharmaceutical healthcare. Audience The book will be immensely interesting and useful to researchers and those working in the areas of clinical research, disease management, pharmaceuticals, R&D formulation, deep learning analytics, remote healthcare management, healthcare analytics, and deep learning in the healthcare industry.

原價: 2250 售價: 2250 現省: 0元
立即查看
DEEP LEARNING FOR CLOUD SECURITY

DEEP LEARNING FOR CLOUD SECURITY

類似書籍推薦給您

DEEP LEARNING APPROACHES TO CLOUD SECURITY Covering one of the most important subjects to our society today, cloud security, this editorial team delves into solutions taken from evolving deep learning approaches, solutions allowing computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined through its relation to simpler concepts. Deep learning is the fastest growing field in computer science. Deep learning algorithms and techniques are found to be useful in different areas like automatic machine translation, automatic handwriting generation, visual recognition, fraud detection, and detecting developmental delay in children. However, applying deep learning techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. This book provides state of the art approaches of deep learning in these areas, including areas of detection and prediction, as well as future framework development, building service systems and analytical aspects. In all these topics, deep learning approaches, such as artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms are used. This book is intended for dealing with modeling and performance prediction of the efficient cloud security systems, thereby bringing a newer dimension to this rapidly evolving field. This groundbreaking new volume presents these topics and trends of deep learning, bridging the research gap, and presenting solutions to the challenges facing the engineer or scientist every day in this area. Whether for the veteran engineer or the student, this is a must-have for any library. Deep Learning Approaches to Cloud Security: Is the first volume of its kind to go in-depth on the newest trends and innovations in cloud security through the use of deep learning approaches Covers these important new innovations, such as AI, data mining, and other evolving computing technologies in relation to cloud security Is a useful reference for the veteran computer scientist or engineer working in this area or an engineer new to the area, or a student in this area Discusses not just the practical applications of these technologies, but also the broader concepts and theory behind how these deep learning tools are vital not just to cloud security, but society as a whole Audience: Computer scientists, scientists and engineers working with information technology, design, network security, and manufacturing, researchers in computers, electronics, and electrical and network security, integrated domain, and data analytics, and students in these areas

原價: 2080 售價: 2080 現省: 0元
立即查看
DEEP LEARNING FOR EEG-BASED BRAIN-COMPUTER INTERFACES

DEEP LEARNING FOR EEG-BASED BRAIN-COMPUTER INTERFACES

類似書籍推薦給您

Deep Learning for EEG-Based Brain–Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain–Computer Interfaces (BCI) in terms of representations, algorithms and applications. BCI bridges humanity's neural world and the physical world by decoding an individuals' brain signals into commands recognizable by computer devices. This book presents a highly comprehensive summary of commonly-used brain signals; a systematic introduction of around 12 subcategories of deep learning models; a mind-expanding summary of 200+ state-of-the-art studies adopting deep learning in BCI areas; an overview of a number of BCI applications and how deep learning contributes, along with 31 public BCI data sets. The authors also introduce a set of novel deep learning algorithms aimed at current BCI challenges such as robust representation learning, cross-scenario classification, and semi-supervised learning. Various real-world deep learning-based BCI applications are proposed and some prototypes are presented. The work contained within proposes effective and efficient models which will provide inspiration for people in academia and industry who work on BCI. Related Link(s) Press Release — Melding Our Minds with the Outside World Sample Chapter(s) Preface Chapter 2: Brain Signal Acquisition Chapter 3: Deep Learning Foundations Contents: Preface Background: Introduction Brain Signal Acquisition Deep Learning Foundations Deep Learning-Based BCI and Its Applications: Deep Learning-Based BCI Deep Learning-Based BCI Applications Recent Advances on Deep Learning for EEG-Based BCI: Robust Brain Signal Representation Learning Cross-Scenario Classification Semi-Supervised Classification Typical Deep Learning for EEG-Based BCI Applications: Authentication Visual Reconstruction Language Interpretation Intent Recognition in Assisted Living Patient-Independent Neurological Disorder Detection Future Directions and Conclusion Bibliography Index Readership: Advanced undergraduate and graduate students, researchers and practitioners in the fields of computer science, data mining, artificial intelligence, and neuroscience. Will also be of interest to industry or companies invested in combining brain signals with real world applications including user authentication, neurological diagnosis, autonomous cars, smart homes, IoT, etc.

原價: 2969 售價: 2821 現省: 148元
立即查看
寫給程式設計師的深度學習|使用 fastai 和 PyTorch (Deep Learning for Coders with fastai and PyTorch) 2021 <O`REILLY>

寫給程式設計師的深度學習|使用 fastai 和 PyTorch (Deep Learning for Coders with fastai and PyTorch) 2021 <O`REILLY>

類似書籍推薦給您

寫給程式設計師的深度學習:使用fastai和PyTorch ISBN13:9789865027360 出版社:美商歐萊禮 作者:Jeremy Howard; Sylvain Gugger 譯者:賴屹民 裝訂/頁數:平裝/640頁 規格:23cm*17cm*3cm (高/寬/厚) 出版日:2021/03/17 中國圖書分類:特殊電腦方法 內容簡介 建構AI應用程式,您不必拿PhD   深度學習通常被視為數學博士和大型科技公司的獨門秘術,然而,正如這本指南所言,如果你已經會寫Python,那麼你只要稍微了解數學、取得少量的資料,就可以用最精簡的程式,寫出令人印象深刻的深度學習作品。怎麼做?使用fastai!它是史上第一個以一致的介面來讓你使用最常見的深度學習應用的程式庫。   本書作者Jeremy Howard與Sylvain Gugger是fastai的創作者,他們將告訴你如何使用fastai和PyTorch訓練各種任務的模型,並帶領你逐步研究深度學習理論,以充分了解藏身幕後的演算法。   ‧訓練電腦視覺、自然語言處理、表格式資料和聯合過濾等任務的模型   ‧學習在實務上最重要且最新的深度學習技術   ‧釐清深度學習模型如何運作,改善準確度、速度與可靠度   ‧了解如何將模型轉換成web應用程式   ‧從零開始實作深度學習演算法   ‧思考作品的道德意義   ‧從PyTorch的聯合創始人Soumith Chintala的前言獲得真知灼見 好評推薦   「這是程式員精通深度學習的最佳資源之一。」 —Peter Norvig,Google研究總監   「本書透過實際的操作,以簡單且實用的方法揭開深度學習的神秘面紗。」 —Curtis Langlotz,史丹佛大學醫學及成像人工智慧中心主任 目錄 第一部分 深度學習實務 第一章 你的深度學習旅程 第二章 從模型到生產 第三章 資料倫理 第二部分 了解 fastai 的應用 第四章 在引擎蓋下:訓練數字分類模型 第五章 圖像分類 第六章 其他的電腦視覺問題 第七章 訓練先進模型 第八章 協同過濾 第九章 表格模型 第十章 NLP:RNN 第十一章 使用 fastai 的中層API 來處理資料 第三部分 深度學習基礎 第十二章 從零開始製作語言模型 第十三章 摺積神經網路 第十四章 ResNets 第十五章 應用架構 第十六章 訓練程序 第四部分 從零開始深度學習 第十七章 神經網路基礎 第十八章 用 CAM 來做 CNN 解釋 第十九章 從零開始打造 fastai Learner 第二十章 思想總結 附錄A 建立部落格 附錄B 資料專案檢查表

原價: 980 售價: 833 現省: 147元
立即查看