書名: 集成式學習:Python 實踐!整合全部技術,打造最強模型 (1版)
作者: Kyriakides、 Margaritis
譯者: 張康寶
版次: 1
ISBN: 9789863126942
出版社: 旗標
#資訊
#編程與軟體開發
#Python
定價: 750
售價: 675
庫存: 已售完
LINE US! 詢問這本書 團購優惠、書籍資訊 等
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

詳細資訊

內容簡介 別再傻傻只選一個模型   訓練很多模型,卻不知道應該選哪一個?沒有一個模型達標?每個模型都有其優缺點,無法取捨?   小朋友才做選擇,大人全都要!你該試試集成式學習!   集成式學習是使用 2 種或更多的機器學習演算法,來組合出預測能力更好的模型。DeepMind 已經使用集成式學習來組合多個神經網路,控制 Google 資料中心的運作效能;集成式學習技術也在 Kaggle 平台上,席捲了各個競賽的第一名寶座。因此,集成式學習是建立出更具威力的模型,不可或缺的技術之一。   本書會介紹實務上常見的集成式學習演算法,如硬投票、軟投票、堆疊法、自助聚合法、適應提升法、梯度提升法、隨機森林、極端隨機樹等,並且使用熱門的 scikit-learn、Keras、OpenEnsembles、XGBoost 等 Python 函式庫來實作各種不同的集成式學習技術,建構出一個強大的模型。熟稔本書的內容後,不但可以精通集成式學習,在實際情境中面對問題時,亦能具備充分的專業知識判斷適用的集成式學習方法,並成功實作它們。   書中採用「做中學」的方式,讓你不僅可以快速掌握理論基礎,也能了解各種集成式學習技術的實作,再加上運用真實世界中的資料集,你將能夠建立出更佳的機器學習模型,以解決各種問題,包含迴歸、分類、分群。   現在翻開本書,讓我們一起進入集成式學習的世界,整合你所會的全部技術,打造最強大的模型。 本書特色   ● 繁體中文第 1 本集成式學習專書,告訴你不要再傻傻地只選一個模型   ● 完整介紹集成式學習中常見的演算法,包含極端隨機樹、堆疊法、自助聚合法、提升法等   ● 一書掌握實作集成式學習的必備套件,如 Scikit-Learn、OpenEnsembles、XGBoost 等   ● 用 Python 刻演算法給你看,接著告訴你怎麼用套件。讓你不只會做,還懂為什麼這麼做   ● 以 5 個實務案例來展示集成式學習的威力   ● 本書由施威銘研究室監修,內容易讀易懂,並加入大量「小編補充」補充必要知識   ● 本書 Python 範例程式免費下載 目錄 前言 第一篇 機器學習基礎知識 第 1 章 機器學習的概念 1.1 資料集 1.2 監督式學習與非監督式學習 13 效能指標(Performance Measures) 1.4 模型驗證(Validation) 1.5 機器學習演算法 1.6 小結 第 2 章 初探集成式學習(Ensemble Learning) 2.1 何謂偏誤與變異 2.2 評估偏誤與變異 2.3 集成式學習(Ensemble Learning) 2.4 小結 第二篇 非生成式演算法 第 3 章 投票法(Voting) 3.1 多數決投票 3.2 使用 Python 實作硬投票 3.3 使用 Python 實作軟投票 3.4 小編補充:加權軟投票 3.5 小結 第 4 章 堆疊法(Stacking) 4.1 超學習(Meta-learning) 4.2 超學習器的訓練資料集 4.3 超學習器的測試資料集 4.4 選擇學習器(Learner) 4.5 使用堆疊法處理迴歸問題 4.6 使用堆疊法處理分類問題 4.7 建立堆疊的函式 4.8 小編補充:堆疊的其他技巧 4.9 小結 第三篇 生成式演算法 第 5 章 自助聚合法(Bootstrap Aggregation) 5.1 自助抽樣法 5.2 自助聚合法的原理 5.3 使用 Python 實作自助聚合法的完整機制 5.4 平行化(Parallelize)自助聚合法 5.5 使用 scikit-learn 提供的自助聚合法處理分類問題 5.6 使用 scikit-learn 提供的自助聚合法處理迴歸問題 5.7 小結 第 6 章 提升法(Boosting) 6.1 適應提升(Adaptive Boosting, AdaBoost) 6.2 使用 Python 實作適應提升的完整機制 6.3 使用 scikit-learn 提供的適應提升處理分類問題 6.4 使用 scikit-learn 提供的適應提升處理迴歸問題 6.5 梯度提升(Gradient Boosting) 6.6 使用 Python 實作梯度提升的完整機制 6.7 使用 scikit-learn 提供的梯度提升處理迴歸問題 68 使用 scikit-learn 提供的梯度提升處理分類問題 6.9 使用 XGBoost 提供的梯度提升處理迴歸問題 610 使用 XGBoost 提供的梯度提升處理分類問題 6.11 小結 第 7 章 隨機森林(Random Forest) 7.1 建立隨機森林 7.2 使用 scikit-learn 提供的隨機森林處理分類問題 73 使用 scikit-learn 提供的隨機森林處理迴歸問題 7.4 使用 scikit-learn 提供的極端隨機樹處理分類問題 7.5 使用 scikit-learn 提供的極端隨機樹處理迴歸問題 7.6 小結 第四篇 分群 第 8 章 分群(Clustering) 8.1 分群演算法 8.2 使用 scikit-learning 提供的 K 平均法來處理分群問題 8.3 使用投票法集成非監督式學習的基學習器 8.4 使用 OpenEnsemble 集成非監督式學習的基學習器 8.5 使用圖閉合(Graph Closure)集成非監督式學習的基學習器 8.6 使用共現鏈(Co-occurrence Linkage)集成非監督式學習的基學習器 8.7 小結 第五篇 5 個實務案例 第 9 章 檢測詐騙交易 9.1 初探資料集 9.2 探索式資料分析 9.3 投票法 9.4 堆疊法 9.5 自助聚合法 9.6 適應提升法 9.7 梯度提升法 9.8 隨機森林 9.9 不同方法的分析比較 9.10 小結 第 10 章 預測比特幣價格 10.1 時間序列資料 10.2 比特幣資料分析 10.3 建立基準模型 10.4 計算 Sharpe 值 10.5 投票法 10.6 堆疊法 10.7 自助聚合法 10.8 提升法 10.9 隨機森林 10.10 小結 第 11 章 推特(Twitter)情感分析 11.1 情感分析工具 11.2 取得 Twitter 資料 11.3 建立模型 11.4 即時分類推文 11.5 小結 第 12 章 推薦電影 12.1 推薦系統 12.2 神經網路推薦系統 12.3 使用 Keras 實作使用點積的神經網路 12.4 使用 Keras 實作自行探索網路結構的神經網路 12.5 集成多個神經網路,建立推薦系統 12.6 小編補充:集成神經網路的參數 12.7 小結 第 13 章 世界幸福報告分群 13.1 世界幸福報告 13.2 使用原始特徵建立集成模型 13.3 使用正規化特徵建立集成模型 13.4 使用 t-分布隨機鄰居嵌入降維後特徵建立集成模型 13.5 觀察分群結果 13.6 小結 後記

為您推薦

Python 函式庫語法範例字典

Python 函式庫語法範例字典

相關熱銷的書籍推薦給您

商品描述 <內容簡介> 彙整最常使用的 Python 函式庫語法 功能索引 + 字母順序查詢, 隨查隨用, 快速解決問題! Python 是近來非常熱門的程式語言, 原因之一就是具有豐富的標準函式庫及第三方套件可以使用, 用途涵蓋字串處理、數值計算、資料壓縮與封存、XML與 JSON 存取等層面。本書集合 Python 常用的函式及模組功能, 依用途分門別類, 提供詳細的使用說明、豐富的語法範例, 讓使用者可以在短時間內找到、學會函式的正確使用方式, 在撰寫程式時更加得心應手! <本書特色> ● 依功能分類, 每個函式都以豐富範例實際演練用法 ● 目錄上列有函式名稱與用途說明, 可依據名稱或是用途查詢 ● 可依字母順序快速查詢想使用的函式功能 ● 本書嚴選的模組功能包括: argparse/array/base64/beautifulsoup4/bisect/bz2/collections/ConfigParser/csv/datetime/dateutil/decimal/doctest/email/enum/fnmatch/glob/gzip/heapg/io/itertools/json/logging/lxml/lzma/math/multiprocessing/openpyxl/os/pathlib/paramiko/pdb/Pillow/pprint/PyCrypto/pydoc/pytest/pytz/random/re/requests/shutil/statistics/subprocess/sys/tartile/tempfile/time/timeit/traceback/unicodedata/unittest/unittest.mock/urllib.parse/weakref/xml.etree.ElementTree/yaml/zipfile/zlib ● 適用 Python 3

原價: 450 售價: 405 現省: 45元
立即查看
英語字彙力:用1400個詞彙打造精準溝通力

英語字彙力:用1400個詞彙打造精準溝通力

類似書籍推薦給您

原價: 480 售價: 408 現省: 72元
立即查看
邊緣AI-使用NVIDIA Jetson Orin Nano開發具備深度學習、電腦視覺與生成式AI功能的ROS2機器人 (1版)

邊緣AI-使用NVIDIA Jetson Orin Nano開發具備深度學習、電腦視覺與生成式AI功能的ROS2機器人 (1版)

類似書籍推薦給您

【簡介】 內容簡介:★ NVIDIA DLI 深度學習機構白金級認證講師專業講解 ★ ★ 完整解析 NVIDIA Jetson 邊緣運算電腦,最新的 Jetson Orin Nano Super 算力飆升1.7倍!【Jetson Orin Nano Super】NVIDIA 執行長黃仁勳盛讚的1.7倍AI算力提升在這裡!【加速運算】NVIDIA Jetson 系列邊緣運算電腦,搭載 CUDA 與 TensorRT 加速技術,實現掌上高速運算的承諾。【立體機器視覺】整合 Intel RealSense 與 StereoLab ZED 景深攝影機,讓機器人擁有清晰的空間感知能力。【ROS2 作業系統】機器人智慧全面升級,輕鬆實現各種自動化任務。【生成式 AI 應用】在裝置端執行各種大語言、圖像、語音與 Cosmos 等多模態生成模型,讓無限創意在邊緣運算中展翅高飛! 【目錄】 章節說明:第 1 章 單板電腦與邊緣運算1.1 邊緣運算裝置1.2 單板電腦1.3 NVIDIA 線上資源1.4 NVIDIA Jetson 家族1.5 Jetson Orin Nano 開發套件開箱1.6 總結第 2 章 Jetson Orin Nano 初體驗2.1 Jetson Orin Nano 開機!2.2 基礎系統操作2.3 Jetson Orin Nano Super2.4 總結第 3 章 深度學習結合視覺辨識應用3.1 OpenCV 電腦視覺函式庫3.2 NVIDIA 深度學習視覺套件包3.3 總結第 4 章 整合深度視覺4.1 Intel RealSense 景深攝影機4.2 ZED 景深攝影機4.3 總結第 5 章 ROS2 機器人作業系統5.1 ROS / ROS25.2 NVIDIA Issac ROS5.3 安裝 ROS25.4 RK ROS2 移動平台5.5 ROS2 基本節點5.6 AI 節點5.7 進階應用5.8 總結第 6 章 生成式 AI 結合邊緣運算裝置6.1 淺談生成式 AI6.2 NVIDIA Jetson Generative AI lab6.3 總結

原價: 580 售價: 493 現省: 87元
立即查看
精確掌握 AI 大趨勢!深度學習技術解密:日本 AI 神人,帶你正確學會從機器學習到生成式 AI 的核心基礎 (1版)

精確掌握 AI 大趨勢!深度學習技術解密:日本 AI 神人,帶你正確學會從機器學習到生成式 AI 的核心基礎 (1版)

類似書籍推薦給您

【簡介】 ▍專業推薦 (依姓名筆劃排列) 王道維|國立清華大學物理系教授 / 人文社會 AI 應用與發展研究中心副主任 林筱玫|台灣人工智慧協會執行長 劉育維|人工智慧解決方案專家暨網路作家 ▍獨角獸新創公司 Preferred Networks 創辦人 ▍2022 年日本「現代の名工」獲獎者 ▍閱讀千篇論文的深厚學識精華 ✧✦AI 神人親自講解深度學習的技術奧秘!✦✧ 千變萬化的 AI 應用,核心都是「深度學習」。 掌握深度學習,才能迎接 AI 世代的新挑戰! 【基礎概念:深度學習的特色、與機器學習的不同】 認識機器學習的不同類型,詳細瞭解神經網路、特徵學習、反向傳播,如何使深度學習脫穎而出。 【發展進化:正規化層、跳躍連接、注意力單元】 深入解說這三項核心技術的數學原理,認識深度學習克服各種困難、大幅進化的歷程。 【實際應用:影像辨識、語音辨識、自然語言處理】 綜合以上基礎,說明深度學習從輸入到輸出完整執行實際任務的過程,以及各種基礎技術在不同應用領域所擔任的重要角色。 【技術回顧:AI 發展的坎坷與突破】 早在 1956 年提出的 AI,為何數十年間乏人問津?深度學習又是如何重燃 AI 的火種?回顧 AI 發展,更能洞察未來方向。 ★特別收錄:精選基礎數學★ 把學校的數學課忘光了也不用怕!附錄彙整深度學習的必要數學知識,有疑問隨時翻閱,回頭立刻跟上大師講解。 本書不含: ✗走馬看花的簡略介紹 ✗只用大量文字描述數學概念 ✗只挑知名的技術做單元介紹 本書注重: ✓各技術運作方式的詳盡解說與參考文獻 ✓大量圖片表達技術要旨、實際數學式演示過程 ✓各技術發展背景與傳承脈絡,描繪深度學習的改革史 ✧✦探索 AI 奧祕絕不該錯過的精采好書!✦✧ 本書特色: ◆難度由淺入深,從基礎數學開始紮穩根基 書中數學式從符號開始一一解說,各種計算及推導都仔細說明,書末更附上基礎數學補充,數學課忘光也不怕 ◆核心關鍵技術一網打盡,完整掌握深度學習 學習模型 / 損失函數 / 梯度下降法 / 反向傳播 / 卷積層 / 循環層 / 閘控機制 / 激活函數 / 正規化 / 跳躍連接 / 注意力單元……核心技術全面涵蓋 ◆插圖、文字、數學式,三管齊下詳盡講解 - 以圖示勾勒整體概念 - 以文字解構問題並說明思路 - 以數學式演示技術流程 3 方向完整拆解、充分理解,讀懂原理不必再囫圇吞棗 ◆從背景到傳承,清楚描繪技術發展脈絡 偉大的技術,即是解決過去的問題,並提出未來的問題;本書清楚描繪核心技術環環相扣的進化史,更能展望 AI 未來的新發展 【目錄】 第 1 章 深度學習與人工智慧 為何深度學習能夠成功 1.1 何謂深度學習?什麼是人工「智慧」? 1.2 深度學習迅速發展的背景 1.3 深度學習的計算資源 1.4 人工智慧的歷史 1.5 未來將如何應用深度學習? 1.6 本章小結 第 2 章 機器學習入門 何謂電腦的「學習」? 2.1 機器學習的背景知識 2.2 模型、參數與資料 2.3 普適能力 — 能否處理未知資料? 2.4 學習的方法 — 監督式學習、非監督式學習與強化式學習 2.5 問題設定的分類學 2.6 機器學習的基本 — 了解機器學習的各種概念 2.7 以機率模型理解機器學習 2.8 本章小結 第 3 章 深度學習的技術基礎 組合資料轉換的「層」實現特徵學習的效果 3.1 特徵學習 — 「標示特徵」的重要性及挑戰 3.2 深度學習的基礎知識 3.3 神經網路是什麼樣的模型? 3.4 神經網路的學習 3.5 反向傳播 — 有效率地計算梯度 3.6 神經網路的主要組成元素 3.7 本章小結 第 4 章 深度學習的發展 改善學習與預測的正規化層╱跳躍連接╱注意力單元 4.1 將「學習」由理論化為現實的基礎技術 — 類似ReLU的激活函數 4.2 正規化層 4.3 跳躍連接 4.4 注意力單元 — 根據輸入,動態改變資料傳遞方式 4.5 本章小結 第 5 章 深度學習的應用技術 大幅進化的影像辨識、語音辨識、自然語言處理 5.1 影像辨識 5.2 語音辨識 5.3 自然語言處理 5.4 本章小結 附錄 精選基礎 深度學習所需的數學概念 A.1 線性代數 A.2 微分 A.3 機率

原價: 630 售價: 567 現省: 63元
立即查看
兒少先後天神經精神障礙及自然療法: 妥瑞抽動、過動ADHD、注意力不集中ADD、學習障礙、亞斯伯格、自閉、強迫、智障、創傷後症候群PTSD

兒少先後天神經精神障礙及自然療法: 妥瑞抽動、過動ADHD、注意力不集中ADD、學習障礙、亞斯伯格、自閉、強迫、智障、創傷後症候群PTSD

類似書籍推薦給您

原價: 450 售價: 338 現省: 112元
立即查看
邊玩邊學,使用Scratch學習AI程式設計專案大集合 (1版)

邊玩邊學,使用Scratch學習AI程式設計專案大集合 (1版)

類似書籍推薦給您

內容簡介   現在立刻嘗試「實現你腦中的各種創意」!   無須數學知識!   無須文字型程式設計語言!   可以成為自由研究的靈感!   這本書是Scratch機器學習入門書《邊玩邊學,使用Scratch學習AI程式設計》的姊妹作,主要介紹透過Scratch,就可以運用影像辨識、聲音辨識、推測姿勢等功能,設計出有趣作品的作法,不需要文字型程式設計語言與複雜的數學知識。裡面也包含整合micro:bit及伺服馬達的作品,透過大量範例,讓你可以思考、創造出運用機器學習機制的原創作品。 目錄 序 關於本書 序章 如何用 Scratch 進行機器學習 關於 Stretch3 第 1 章 推測姿勢專案 1-1 用姿勢做出 ○X 反應 1-2 伏地挺身洞窟探險遊戲 1-3 空中寫字 1-4 數位 3D 卡 1-5 計算人數裝置 第 2 章 影像辨識專案 2-1 吐司辨識機 2-2 辨識手寫數字 2-3 時尚穿衣鏡 2-4 自動煞車系統 2-5 尋物遊戲 2-6 依食材搜尋料理 第 3 章 聲音辨識專案 3-1 自動翻譯機 3-2 使用 micro:bit 完成芝麻開門 3-3 利用 LINE 傳遞家電的通知音效 |專欄| 偵測觀看者的視線,藉此展現立體感的螢幕及影像技術 進步的機器之眼 瀏覽其他人的機器學習專案

原價: 480 售價: 408 現省: 72元
立即查看