書名: 圖解機器學習與資料科學的數學基礎|使用Python (1版)
作者: 松田雄馬、 露木宏志、千葉彌平
譯者: 許郁文
版次: 1
ISBN: 9786263241817
出版社: 碁峰
書籍開數、尺寸: 17x23x2
頁數: 432
內文印刷顏色: 雙色
#資訊
#資訊科學與資訊系統
#AI人工智慧與機器學習
定價: 650
售價: 553
庫存: 已售完
LINE US! 詢問這本書 團購優惠、書籍資訊 等
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

詳細資訊

內容簡介   搞懂不會背叛你的數學,進一步提升你的程式功力!   本書透過圖表解說人工智慧與資料科學領域的相關數學知識,並告訴你如何將其轉換為程式碼,除了可以吸收關於數學的知識之外,也能立即運用在工作上。   透過機率統計的學習,了解如何改善業務流程   本書將AI與資料科學的相關數學知識分成四大篇,第一篇的「機率統計、機器學習篇」介紹的是了解工作情況,篩選出必要資訊的流程,以及位於這個流程背後的機率統計、機器學習的數學知識。能掌握工作情況就能知道該如何改善相關業務,也能進一步觀察未來的變化。   了解最佳化的步驟,學會職場所需的最佳化流程   第二篇「數理最佳化篇」介紹最佳化業務的流程,以及解決業務問題的方法。要最佳化業務,就必須先了解哪些部分需要改善效率,換言之,最佳化的重點在於找出問題。了解最佳化的步驟與問題的種類,就能學會工作職場所需的最佳化流程。   透過預測病毒的傳播模式,了解相關的數學理論   第三篇「數值模擬篇」則以傳染染病的傳播為主題,學習預測這類傳播模式的微分。只要了解微分,就能了解病毒的傳播模式,也能利用動畫說明傳播模式與製作出臨場感十足的簡報。最後的「深度學習篇」則會先說明近年來發展神速的深度學習技術原理,再說明這些原因都於哪些技術或職場應用。 來自讀者的讚譽   「這是我買過最實用的書」   「這本書可以讓你知道如何將數學應用在現實世界的工作之中」   「這本書拯救了文科出身,在工作上又不得不面對數學的我」 目錄 序章|設定 Python開發環境 第一篇機率統計、機器學習篇 第1章|取得資料之後的第一件事 第2章|試著利用機器學習進行分析 第3章|推測必需的資料筆數 第二篇 數理最佳化篇 第4章|透過最佳路徑規劃問題,了解解決最佳化問題的方法 第5章|透過排班問題了解最佳化問題的全貌 第三篇 數値模擬篇 第6章|試著預測傳染病的影響 第7章|試著透過動畫模擬人類的行為 第四篇 深度學習篇 第8章|了解深度學習辨識影像的方法 第9章|了解深度學習處理時間序列資料的機制 第10章|了解以深度學習進行的圖片處理與語言處理 Appendix 程式設計與數學之間的橋梁 Appendix 1|利用公式了解常態分佈 Appendix 2|微分方程式差分法造成的誤差與泰勒展開式 Appendix 3|非線性最佳化的機械學習/深度學習的迴歸/分類

為您推薦

圖解機器學習、人工智慧與人類未來 (1版)

圖解機器學習、人工智慧與人類未來 (1版)

類似書籍推薦給您

原價: 300 售價: 255 現省: 45元
立即查看
超圖解資料科學 ✕ 機器學習實戰探索:使用 Python (1版)

超圖解資料科學 ✕ 機器學習實戰探索:使用 Python (1版)

類似書籍推薦給您

【簡介】 資料科學、機器學習是近來最夯的關鍵字, 所引發的學習熱潮從未間斷。然而初學的你只要稍微上網搜尋可能會發現, 資料科學涉及的領域實在超~級~廣, 包括 AI、機器學習、程式設計、資料視覺化、數學、統計...等等, 一拖拉庫的名詞都與資料科學沾上邊;相關書籍更是不少, 各書的切入點明顯都不一樣, 卻都一致高喊「我帶你學資料科學!」讓初學者看得更花了, 對於如何入門愈來愈沒頭緒... 這麼雜到底怎麼學?AI、統計、Python / R 程式語言...通通碰過一輪? 先看完這本書再說!與其雜亂無章東學西學, 本書大聲告訴你:「資料科學沒那麼複雜!」, 只要跟著書中精心設計的「資料科學 5 步驟」: 問個感興趣的問題 → 資料取得 → 資料處理 → 探索性資料分析 → 機器學習做資料分析 「記牢」、「做熟」這 5 步就夠了! [鐵了心就是要你會!利用 Colab ✕ Python 反覆操演] 在各步驟中, 我們會帶你用 Colab 免費雲端平台以及 Python 這個超夯工具動手操演多個資料科學經典案例, 讀者可以從過程中逐步吸收資科科學乃至於機器學習各階段要處理的「眉眉角角」。 要是做過一輪還不熟沒關係, 我們換個範例多 run 幾遍!幾輪下來一定會對資料科學的內涵更加清晰, 也會對機器學習在其中所扮演的角色有更深刻的認識! [圖解爆棚, 隨便翻閱都有感] 更棒的是, 學習資料科學、機器學習免不了會碰到許多看起來很難懂的數學公式, 實作時也得學習各種陌生的 Python 語法, 為此作者特別在書中設計大量插圖, 協助你有效率地理解內容;而每一章最前面的「學習地圖」更可以幫你隨時掌握學習脈絡, 有這些超圖解的「加持」, 讓你遇到再複雜的概念也不怕! 【目錄】 Ch01 破冰!資料科學觀念養成 Ch02 Python 資料科學實作平台:Google Colab Ch03 認識資料科學神器 pandas 並用網路爬蟲取得資料 Ch04 初探資料科學 (一):用 pandas 做資料前處理 Ch05 初探資料科學 (二):用資料視覺化發掘重要資訊 Ch06 經典案例演練!更深入的探索性資料分析 Ch07 資料科學 Level UP!認識機器學習演算法 Ch08 機器學習實戰 (一):用線性迴歸分析做趨勢預測 Ch09 機器學習實戰 (二):用 K最近鄰法 (KNN) 做分類 Ch10 機器學習實戰 (三):用 K平均法 (K-Means) 做分群

原價: 560 售價: 504 現省: 56元
立即查看
機器學習:彩色圖解 + 基礎數學篇 + Python實作 王者歸來 (2版)

機器學習:彩色圖解 + 基礎數學篇 + Python實作 王者歸來 (2版)

類似書籍推薦給您

機器學習:彩色圖解+基礎數學篇+Python實作王者歸來 ISBN13:9789865501969 出版社:深智數位 作者:洪錦魁 裝訂/頁數:平裝/440頁 規格:23cm*17cm*2cm (高/寬/厚) 版次:2 出版日:2021/05/13 中國圖書分類:特殊電腦方法 內容簡介   這幾年心中總想寫一本可以讓擁有高中數學程度的讀者即可看懂人工智慧、機器學習或深度學習的書籍,或是說看了不會想睡覺的機器學習書籍,這個理念成為我撰寫這本書籍很重要的動力。為了卸除數學心房,筆者撰寫此書依循原則如下:   ★:數學原理彩色圖解。   ★:手工計算基礎數學。   ★:Python程式高效實作。   這本數撰寫的幾個特色如下:   ☆:全數共用約205個Python實例,講解機器學習的基礎數學   ☆:極詳細、超清楚、帶領讀者從畏懼數學到喜歡數學   ☆:複雜的數學符號重新拆解,原來可以很容易   ☆:了解機器學習的數學原理,讓機器學習程式充滿智慧靈魂   在徹底研究機器學習後,筆者體會許多基礎數學不是不會與艱難而是生疏了,如果機器學習的書籍可以將複雜公式從基礎開始一步一步推導,其實可以很容易帶領讀者進入這個領域,同時感受數學不再如此艱澀,這也是我撰寫本書時時提醒自己要留意的事項。   研究機器學習雖然有很多模組可以使用,但是如果不懂相關數學原理,坦白說筆者不會相信未來你在這個領域會有所成就,這本書講解了下列相關數學的基本知識。   ■ 資料視覺化使用matplotlib、Seaborn   ■ 基礎數學模組Math   ■ 基礎數學模組Sympy   ■ 數學應用模組Numpy   ■ 將LaTeX應用在圖表   ■ 機器學習基本觀念   ■ 從方程式到函數   ■ 方程式與機器學習   ■ 從畢氏定理看機器學習   ■ 聯立方程式與聯立不等式與機器學習   ■ 機器學習需要知道的二次函數與三次函數   ■ 數據擬合、決定係數與迴歸曲線製作   ■ 數據預測   ■ 機器學習的最小平方法   ■ 機器學習必須知道的集合與機率   ■ 機率觀念與貝式定理的運用-COVID-19的全民普篩準確性推估   ■ 筆者講解指數與對數的運算規則,同時驗證這些規則   ■ 除了講解機器學習很重要的歐拉數(Euler’s Number),更說明歐拉數的由來   ■ 認識邏輯(logistic)函數與logit函數   ■ 三角函數   ■ 大型運算子運算   ■ 向量、矩陣與線性迴歸   ■ 統計知識   ■ 機器學習模組scikit-learn,監督學習與無監督學習。   相關書籍   這本書是筆者所著機器學習系列書的起點,讀者還可以閱讀下列書籍:   機器學習   彩色圖解 + 微積分篇 + Python實作 目錄 第1 章 資料視覺化 1-1 認識mapplotlib.pyplot 模組的主要函數 1-2 繪製簡單的折線圖plot( ) 1-3 繪製散點圖scatter( ) 1-4 Numpy 模組 1-5 圖表顯示中文 1-6 長條圖與直方圖 1-7 Numpy 的指數與對數函數 第2 章 數學模組Math 和Sympy 2-1 數學模組的變數 2-2 一般函數 2-3 log( ) 函數 2-4 三角函數 2-5 Sympy 模組 第3 章 機器學習基本觀念 3-1 人工智慧、機器學習、深度學習 3-2 認識機器學習 3-3 機器學習的種類 3-4 機器學習的應用範圍 第4 章 機器學習的基礎數學 4-1 用數字描繪事物 4-2 變數觀念 4-3 從變數到函數 4-4 等式運算的規則 4-5 代數運算的基本規則 4-6 用數學抽象化開餐廳的生存條件 4-7 基礎數學的結論 第5 章 認識方程式/ 函數/ 座標圖形 5-1 認識方程式 5-2 方程式文字描述方法 5-3 一元一次方程式 5-4 函數 5-5 座標圖形分析 5-6 將線性函數應用在機器學習 第6 章 從聯立方程式看機器學習的數學模型 6-1 數學觀念建立連接兩點的直線 6-2 機器學習使用聯立方程式推估數據 6-3 從2 條直線的交叉點推估科學數據 6-4 兩條直線垂直交叉 第7 章 從畢氏定理看機器學習 7-1 驗證畢氏定理 7-2 將畢氏定理應用在性向測試 7-3 將畢氏定理應用在三維空間 7-4 將畢氏定理應用在更高維的空間 7-5 電影分類 第8 章 聯立不等式與機器學習 8-1 聯立不等式的基本觀念 8-2 聯立不等式的線性規劃 8-3 Python 計算 第9 章 機器學習需要知道的二次函數 9-1 二次函數的基礎數學 9-2 從一次到二次函數的實務 9-3 認識二次函數的係數 9-4 使用3 個點求解二次函數 9-5 二次函數的配方法 9-6 二次函數與解答區間 第10 章 機器學習的最小平方法 10-1 最小平方法基本觀念 10-2 簡單的企業實例 10-3 機器學習建立含誤差值的線性方程式 10-4 Numpy 實作最小平方法 10-5 線性迴歸 10-6 實務應用 第11 章 機器學習必須懂的集合 11-1 使用Python 建立集合 11-2 集合的操作 11-3 子集、宇集與補集 11-4 加入與刪除集合元素 11-5 冪集與Sympy 模組 11-6 笛卡兒積 第12 章 機器學習必須懂的排列與組合 12-1 排列基本觀念 12-2 有多少條回家路 12-3 排列組合 12-4 階乘的觀念 12-5 重複排列 12-6 組合 第13 章 機器學習需要認識的機率 13-1 機率基本觀念 13-2 數學機率與統計機率 13-3 事件機率名稱 13-4 事件機率規則 13-5 抽獎的機率 – 加法與乘法綜合應用 13-6 餘事件與乘法的綜合應用 13-7 條件機率 13-8 貝氏定理 13-9 蒙地卡羅模擬 13-10 Numpy 的隨機模組random 第14 章 二項式定理 14-1 二項式的定義 14-2 二項式的幾何意義 14-3 二項式展開與規律性分析 14-4 找出xn-kyk 項的係數 14-5 二項式的通式 14-6 二項式到多項式 14-7 二項分佈實驗 14-8 將二項式觀念應用在業務數據分析 14-9 二項式機率分佈Python 實作 14-10 Numpy 隨機數模組的binomial( ) 函數 第15 章 指數觀念與指數函數 15-1 認識指數函數 15-2 指數運算的規則 15-3 指數函數的圖形 第16 章 對數(logarithm) 16-1 認識對數函數 16-2 對數表的功能 16-3 對數運算可以解決指數運算的問題 16-4 認識對數的特性 16-5 對數的運算規則與驗證 第17 章 歐拉數與邏輯函數 17-1 歐拉數 17-2 邏輯函數 17-3 logit 函數 17-4 邏輯函數的應用 第18 章 三角函數 18-1 直角三角形的邊長與夾角 18-2 三角函數的定義 18-3 計算三角形的面積 18-4 角度與弧度 18-5 程式處理三角函數 18-6 從單位圓看三角函數 第19 章 基礎統計與大型

原價: 680 售價: 612 現省: 68元
立即查看
圖解RPA機器人流程自動化入門

圖解RPA機器人流程自動化入門

類似書籍推薦給您

原價: 499 售價: 424 現省: 75元
立即查看
世界第一簡單的演算法: 圖解 ✕ 程式 ✕ 刷題機器人 (1版)

世界第一簡單的演算法: 圖解 ✕ 程式 ✕ 刷題機器人 (1版)

類似書籍推薦給您

【簡介】 傳統的演算法書籍太過枯燥無聊,裡面全是些看再多遍也看不懂的複雜理論、數學公式還有程式,光是翻幾頁就讓人哈欠連連,這對初學者而言就像在看外星文,而且有些程式概念很抽象,更是無法透過文字敘述就能理解。 本書透過生活化的舉例做引導,並避免無聊又複雜的敘述,目的就是希望讓讀者能像閱讀小說般地學會演算法概念。我相信最好的學習方式就是能回想起我們熟悉的事物,以範例來說明會讓你更容易回想。例如,當你忘記【陣列】與【鏈結串列】的差異時 (本書第 2 章的主題),只要回想到在電影院找座位就可以了。 本書內容精心挑選過,而且用生動有趣的手繪圖來輔助理解,所介紹的演算法都非常實用,希望能幫讀者奠定良好的基礎,以便將來學習更進階的演算法。 【目錄】 Ch01 二元搜尋法 (Binary Search) 與演算法執行時間 Ch02 選擇排序法 (Selection Sort) Ch03 遞迴 (Recursion) Ch04 Divide-and-Conquer 與快速排序法 (Quicksort) Ch05 雜湊表 (Hash table) Ch06 廣度優先搜尋 (Breadth-First Search) Ch07 樹狀圖 (tree) Ch08 平衡樹 (Balanced Tree) Ch09 戴克斯特拉 (Dijkstra) 演算法 Ch10 貪婪演算法 (Greedy Algorithm) Ch11 動態規劃演算法 (Dynamic Programming Algorithm) Ch12 K-最近鄰演算法 (K-Nearest Neighbors Algorithm) Ch13 進階之路:推薦十種演算法 附錄 A AVL 樹的效能 附錄 B NP-hard 問題 附錄 C 習題與解答 Bonus 客製化刷題機器人–驗證你的演算法學習成效

原價: 599 售價: 539 現省: 60元
立即查看