定價: | ||||
售價: | 2650元 | |||
庫存: | 已售完 | |||
LINE US! | ||||
此書為本公司代理,目前已售完,有需要可以向line客服詢問進口動向 | ||||
付款方式: | 超商取貨付款 |
![]() |
|
信用卡 |
![]() |
||
線上轉帳 |
![]() |
||
物流方式: | 超商取貨 | ||
宅配 | |||
門市自取 |
為您推薦
類似書籍推薦給您
類似書籍推薦給您
Graphics for Statistics and Data Analysis with R presents the basic principles of sound graphical design and applies these principles to engaging examples using the graphical functions available in R. It offers a wide array of graphical displays for the presentation of data, including modern tools for data visualization and representation. The book considers graphical displays of a single discrete variable, a single continuous variable, and then two or more of each of these. It includes displays and the R code for producing the displays for the dot chart, bar chart, pictographs, stemplot, boxplot, and variations on the quantile-quantile plot. The author discusses nonparametric and parametric density estimation, diagnostic plots for the simple linear regression model, polynomial regression, and locally weighted polynomial regression for producing a smooth curve through data on a scatterplot. The last chapter illustrates visualizing multivariate data with examples using Trellis graphics. Showing how to use graphics to display or summarize data, this text provides best practice guidelines for producing and choosing among graphical displays. It also covers the most effective graphing functions in R. R code is available for download on the book’s website.
類似書籍推薦給您
【簡介】 Using real-world data case studies, this innovative and accessible textbook introduces an actionable framework for conducting trustworthy data science.Most textbooks present data science as a linear analytic process involving a set of statistical and computational techniques without accounting for the challenges intrinsic to real-world applications. Veridical Data Science, by contrast, embraces the reality that most projects begin with an ambiguous domain question and messy data; it acknowledges that datasets are mere approximations of reality while analyses are mental constructs. Bin Yu and Rebecca Barter employ the innovative Predictability, Computability, and Stability (PCS) framework to assess the trustworthiness and relevance of data-driven results relative to three sources of uncertainty that arise throughout the data science life cycle: the human decisions and judgment calls made during data collection, cleaning, and modeling. By providing real-world data case studies, intuitive explanations of common statistical and machine learning techniques, and supplementary R and Python code, Veridical Data Science offers a clear and actionable guide for conducting responsible data science. Requiring little background knowledge, this lucid, self-contained textbook provides a solid foundation and principled framework for future study of advanced methods in machine learning, statistics, and data science. Presents the Predictability, Computability, and Stability (PCS) methodology for producing trustworthy data-driven resultsTeaches how a data science project should be conducted from beginning to end, including extensive discussion of the data scientist’s decision-making processCultivates critical thinking throughout the entire data science life cycleProvides practical examples and illuminating case studies of real-world data analysis problems with associated code, exercises, and solutionsSuitable for advanced undergraduate and graduate students, domain scientists, and practitioners
類似書籍推薦給您
With the advent of the Al era, professionals need to select the right tools to meet new opportunities and challenges! This instructional material focuses on the application of big data analysis, text mining, and machine learning in auditing to assist readers in understanding the latest developments in data analysis and smart audit. JCAATs is a new generation audit software developed by Python, which can be executed in a Windows and MAC operation systems with a multi-language, visual, and easy-to-use interface. Non-IT professionals can easily conduct smart data analysis. Through JCAATs' built-in data fusion technology and OPEN DATA connector, heterogeneous data can be quickly analyzed in real-time and effectively identifying anomalies. The features of this book include: The book is structured to provide a progressive learning experience, with chapters covering different concepts and applications, as well as exercises and practice questions. The official textbook endorsed by ICAEA for the ICCP (International Certified CAATs Practitioner) certification exams. This book provides an educational version of the JCAATs - AI audit software for trial use, with a multi-language interface. The book provides several practical examples which allowing you to hands-on practice for smart auditing. This material is suitable for professionals such as accountants, auditors, compliance officers, risk managers, information security professionals, managers at all levels, and college students as a learning reference. To cultivate AI programming skills in business schools and other institutions, the International Computer Auditing Education Association (ICAEA) recommends starting with No Code. This approach allows students to develop audit applications to solve real-world problems without needing to write any code, giving them practical experience and enhancing their professional value. Once proficient in No Code, students can progress to Read Code training, where they gain an understanding of coding logic. Finally, Write Code training enables them to create their own AI applications. This approach prepares students for a future working environment centered on data analysis and smart auditing, where they can collaborate with AI auditing robots. As the AI era presents new challenges to the education of business professionals, colleges must adopt innovative and effective approaches to prepare their students for the workforce of the future. ◎代理經銷 白象文化
類似書籍推薦給您
Discover detailed insights into the methods, algorithms, and techniques for deep learning in sensor data analysis Sensor Data Analysis and Management: The Role of Deep Learning delivers an insightful and practical overview of the applications of deep learning techniques to the analysis of sensor data. The book collects cutting-edge resources into a single collection designed to enlighten the reader on topics as varied as recent techniques for fault detection and classification in sensor data, the application of deep learning to Internet of Things sensors, and a case study on high-performance computer gathering and processing of sensor data. The editors have curated a distinguished group of perceptive and concise papers that show the potential of deep learning as a powerful tool for solving complex modelling problems across a broad range of industries, including predictive maintenance, health monitoring, financial portfolio forecasting, and driver assistance. The book contains real-time examples of analyzing sensor data using deep learning algorithms and a step-by-step approach for installing and training deep learning using the Python keras library. Readers will also benefit from the inclusion of: A thorough introduction to the Internet of Things for human activity recognition, based on wearable sensor data An exploration of the benefits of neural networks in real-time environmental sensor data analysis Practical discussions of supervised learning data representation, neural networks for predicting physical activity based on smartphone sensor data, and deep-learning analysis of location sensor data for human activity recognition An analysis of boosting with XGBoost for sensor data analysis Perfect for industry practitioners and academics involved in deep learning and the analysis of sensor data, Sensor Data Analysis and Management: The Role of Deep Learning will also earn a place in the libraries of undergraduate and graduate students in data science and computer science programs.