書名: Tensorflow接班王者: Google JAX深度學習又快又強大
作者: 王曉華著
ISBN: 9786267146897
出版社: 深智數位
出版日期: 2023/01
書籍開數、尺寸: 17x23x1.96
頁數: 400
內文印刷顏色: 單色
#資訊
#資訊科學與資訊系統
#AI人工智慧與機器學習
定價: 780
售價: 702
庫存: 已售完
LINE US! 詢問這本書 團購優惠、書籍資訊 等
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

為您推薦

新一代 Keras 3.x 重磅回歸:跨 TensorFlow 與 PyTorch 建構 Transformer、CNN、RNN、LSTM 深度學習模型 (1版)

新一代 Keras 3.x 重磅回歸:跨 TensorFlow 與 PyTorch 建構 Transformer、CNN、RNN、LSTM 深度學習模型 (1版)

類似書籍推薦給您

【簡介】 ✧✦第一本 Keras 3 深度學習入門書✦✧ ✧✦一本搞定影像辨識與自然語言處理✦✧ ✧✦先圖解、再實作、而後實務應用✦✧ 本書以淺顯易懂的方式與大量圖例介紹深度學習的理論基礎,並使用 Keras 3 來建構 MLP、CNN、RNN、LSTM、GRU、Transformer 模型,實作多種熱門分類、迴歸問題,最後再介紹資料預處理、超參數調整、預訓練模型的遷移學習等,讓讀者能夠應對未來的實務應用。 深度學習是一種實現機器學習的技術,能夠使用模仿人類大腦功能的「類神經網路」,訓練模型從大量資料中學習,進而處理如視覺、聽覺等感知問題。 而 Keras 3 是 Keras 的重磅回歸,這是架構在 TensorFlow 和 PyTorch 等後台框架上的高階前端函式庫,可以讓使用者輕鬆取得不同後台框架的優點,來打造出最佳的神經網路模型。 書中內容包含:普遍應用於影像辨識的 CNN、善於處理序列資料的 LSTM,還有近幾年爆紅、多被應用於自然語言、語音或音樂資料的 Transformer 模型,以及基於 Transformer 的 BERT 和 GPT 等大型語言模型的應用,還有結合文字與圖像的 StableDiffusion 文字生圖等豐富內容。 除了講述深度學習理論基礎之外,還提供大量實作範例: ☛ MLP 多層感知器 - 疾病預測、房價預測的迴歸問題 ☛ CNN 卷積神經網路 - 手寫辨識、彩色圖片辨識 ☛ RNN 循環神經網路、GRU 閘門循環單元神經網路 - 影評的情緒分析 ☛ LSTM 長短期記憶神經網路 - 股價預測、新聞主題分類 ☛ Transformer 模型 - 文字的情感分析、語言翻譯 以及預訓練模型與遷移學習: ☛ CV 電腦視覺 - ResNet50 圖片分類、YOLO 物體偵測、StableDiffusion 文字生圖 ☛ NLP 自然語言處理 - BERT 情感分析、GPT-2 唐詩生成 還有 AE 自編碼器、Functional API 客製化神經網路、AutoML 自動調校模型超參數等多種主題等著你來學習! 本書特色: ✓ 跨 TensorFlow 和 PyTorch 的 Keras 開發環境 ✓ 人工智慧、機器學習、深度學習的理論基礎 ✓ 從最根本的感知器、到當紅的 Transformer 模型 ✓ 逐步建構並調校自己的神經網路模型 ✓ 影像、文字資料的預處理與模型視覺化 ✓ YOLO、StableDiffusion 等電腦視覺模型的應用 ✓ BERT、GPT 等大型預訓練模型的遷移學習 ✓ 打造支援 GPU 的 Keras 開發環境 【目錄】 目錄: ▍第一篇 人工智慧與深度學習的基礎 第 1 章 認識人工智慧與機器學習 1-1 人工智慧概論 1-2 認識機器學習 1-3 機器學習的種類 第 2 章 建構跨 TensorFlow 和 PyTorch 的 Keras 開發環境 2-1 認識 TensorFlow、PyTorch 與 Keras 2-2 建立與管理 Python 虛擬環境 2-3 建構 Python 深度學習的開發環境 2-4 使用 Spyder 整合開發環境 2-5 Jupyter Notebook 基本使用 2-6 使用 Google Colaboratory 雲端服務 第 3 章 深度學習的基礎 3-1 認識深度學習 3-2 深度學習的基礎知識 3-3 深度學習的神經網路 – 建構你的計算圖 3-4 深度學習的資料 – 張量 ▍第二篇 多層感知器 – 迴歸與分類問題 第 4 章 圖解神經網路 – 多層感知器 (MLP) 4-1 線性不可分問題 4-2 認識多層感知器 (MLP) 4-3 神經網路的學習過程 – 正向與反向傳播 4-4 啟動函數與損失函數 4-5 反向傳播演算法與梯度下降法 4-6 神經網路的樣本和標籤資料 第 5 章 打造你的神經網路 – 多層感知器 5-1 如何使用 Keras 打造神經網路 5-2 打造分類問題的神經網路:糖尿病預測 5-3 認識線性迴歸 5-4 打造迴歸問題的神經網路:波士頓房價預測 5-5 儲存與載入神經網路模型 第 6 章 多層感知器的實作案例 6-1 實作案例:鳶尾花資料集的多元分類 6-2 實作案例:鐵達尼號資料集的生存分析 6-3 實作案例:加州房價預測的迴歸問題 ▍第三篇 卷積神經網路 – 電腦視覺 第 7 章 圖解卷積神經網路 (CNN) 7-1 影像資料的穩定性問題 7-2 卷積運算與池化運算 7-3 認識卷積神經網路 CNN 7-4 卷積層 7-5 池化層與 Dropout 層 7-6 打造你的卷積神經網路 第 8 章 打造你的卷積神經網路 8-1 認識 MNIST 手寫數字資料集 8-2 使用 MLP 打造 MNIST 手寫辨識 8-3 使用 CNN 打造 MNIST 手寫辨識 8-4 MNIST 手寫辨識的預測結果 第 9 章 卷積神經網路的實作案例 9-1 實作案例:辨識 CIFAR-10 資料集的彩色圖片 9-2 實作案例:使用 MLP 或 CNN 實作自編碼器 9-3 實作案例:使用 CNN 自編碼器去除圖片的雜訊 ▍第四篇 循環神經網路 – 自然語言處理 第 10 章 圖解 RNN、LSTM 和 GRU 神經網路 10-1 認識序列資料 10-2 自然語言處理的基礎 10-3 循環神經網路 (RNN) 10-4 長短期記憶神經網路 (LSTM) 10-5 閘門循環單元神經網路 (GRU) 10-6 文字資料向量化 Text Data Vectorization 第 11 章 打造你的循環神經網路 11-1 認識 IMDb 網路電影資料集 11-2 資料預處理與 Embedding 層 11-3 使用 MLP 和 CNN 打造 IMDb 情緒分析 11-4 如何使用 Keras 打造循環神經網路 11-5 使用 RNN、LSTM 和 GRU 打造 IMDb 情緒分析 11-6 堆疊 CNN 和 LSTM 打造 IMDb 情緒分析 第 12 章 循環神經網路的實作案例 12-1 實作案例:使用 LSTM 打造 MNIST 手寫辨識 12-2 實作案例:使用 LSTM 模型預測 Google 股價 12-3 實作案例:Reuters 路透社資料集的新聞主題分類 ▍第五篇 建構出你自己的深度學習模型 第 13 章 訓練資料、預處理層與神經層資訊 13-1 多種資料來源的訓練資料 13-2 取得神經層資訊與中間層視覺化 13-3 載入文字檔資料集與文字預處理層 13-4 載入圖檔資料集與圖片預處理層 13-5 資料增強的圖片增強層 13-6 實作案例:在 Keras 模型使用圖片預處理層與增強層 第 14 章 調校你的深度學習模型 14-1 識別出模型的過度擬合問題 14-2 避免低度擬合與過度擬合 14-3 加速神經網路的訓練:選擇優化器 14-4 加速神經網路的訓練:批次正規化 14-5 在正確的時間點停止模型訓練 14-6 在模型訓練時自動儲存最佳權重 14-7 自動調校神經網路模型的超參數:KerasTuner 第 15 章 預訓練模型與遷移學習 15-1 Keras 預訓練模型的圖片分類 15-2 KerasCV 的 YOLO 物體偵測與 StableDiffusion 文生圖 15-3 KerasNLP 的 GPT-2 生成文字與 BERT 情感分析 15-4 認識遷移學習 15-5 實作案例:MNIST 手寫辨識的遷移學習 15-6 實作案例:Keras 預訓練模型的遷移學習 第 16 章 Functional API、客製化神經網路與 Transformer 模型 16-1 深度學習模型視覺化 16-2 再談 Functional API 16-3 共享層模型與多輸入 / 多輸出模型 16-4 客製化 Keras 神經網路 16-5 認識 Seq2Seq 模型與 Transformer 模型 16-6 實作案例:Transformer 情感分析與英譯中 16-7 實作案例:微調 KerasNLP 的 GPT-2 生成唐詩 ▍電子書 附錄 A Python 程式語言與開發環境建立 A-1 Python 開發環境的建立 A-2 變數、資料型別與運算子 A-3 流程控制 A-4 函式、模組與套件 A-5 容器型別 A-6 類別與物件 附錄 B 使用 WSL 2 安裝支援 GPU 的 Keras 與 KerasNLP 開發環境 B-1 安裝 WSL 2、終端機與 Linux 子系統 B-2 在 Linux 子系統安裝 Anaconda B-3 建立支援 GPU 的 Keras 與 KerasNLP 開發環境 B-4 使用 Jupyter Notebook 測試 GPU 開發環境

原價: 750 售價: 675 現省: 75元
立即查看
精通機器學習|使用Scikit-Learn, Keras與TensorFlow (3版)

精通機器學習|使用Scikit-Learn, Keras與TensorFlow (3版)

類似書籍推薦給您

內容簡介   建立智慧型系統的概念、工具與技術   深度學習在經歷了一系列的突破之後,已經推動了整個機器學習領域的發展。如今,即使是對於這項技術非常陌生的程式設計師,也能夠使用簡單、高效率的工具,寫出能從資料中學習的程式。這本暢銷書使用具體的例子、最少的理論,以及具備生產水準的Python框架(Scikit-Learn、Keras和TensorFlow)來協助你直接瞭解智慧系統的建構概念與工具。   在這本第三版中,作者Aurélien Géron將探索一系列的技術,從簡單的線性回歸開始,逐步發展到深度神經網路。本書包含許多範例程式和習題來幫助活用所學,只要具備一些程式設計經驗即可入門。   ‧使用Scikit-Learn自始至終完成機器學習專案   ‧探索多種模型,包括支援向量機、決策樹、隨機森林,和集成方法   ‧運用無監督學習技術,例如降維、聚類法和異常檢測   ‧深入探討神經網路架構,包括摺積神經網路、遞迴網路、生成對抗網路、自動編碼器、擴散模型、轉換器   ‧使用TensorFlow和Keras建構和訓練神經網路,以進行計算機視覺、自然語言處理、生成模型和深度強化學習 好評推薦   「這是一本出色的機器學習資源,包含淺顯易懂的解說,以及豐富的實用技巧。」 —François Chollet,Keras作者,《Deep Learning with Python》作者   「本書是運用神經網路來解決問題的絕佳入門資源,涵蓋理論及實踐。推薦給想學習實用機器學習技術的人。」 —Pete Warden,TensorFlow行動主管 作者介紹 Aurélien Géron   Aurélien Géron 是位機器學習顧問。他曾經於Google任職,在2013年至2016年帶領YouTube的影片分類團隊。他也是Wifirst的創始人兼CTO(自2002年至2012年),並且是電信諮詢公司Polyconseil創始人兼CTO(於2011年)。

原價: 1200 售價: 1020 現省: 180元
立即查看
C#也能完整AI:TensorFlow.NET實戰現場 (1版)

C#也能完整AI:TensorFlow.NET實戰現場 (1版)

類似書籍推薦給您

內容簡介 ★在最熟悉的作業系統、IDE中,用Tensorflow開發深度學習專案★ ☆使用Tensorflow.NET在Visual Studio下完成AI開發☆   坊間幾乎所有和AI、深度學習、機器學習有關的書籍或教材,均是以Python及相對的框架進行開發,並且建議架設在Linux上。雖然這個環境非常適合進行AI專案的開發,但對於已經熟悉Visual Studio下.NET架構的大部分Windows開發者來說,如果能使用Tensorflow的強大,再加上早就上手的.NET甚至是C#語言,學習曲線真的就只剩下深度學習,排除了Linux及Python的困難。   微軟在.NET平臺上引入機器學習,努力使機器學習技術跨越鴻溝,普及至大多數人手中。微軟的ML.NET旨在實現人工智慧的「民主化」,讓每個人都能使用並受益於人工智慧技術。在.NET生態中,人工智慧領域的SciSharp Stack團隊為TensorFlow提供了.NET Standard Binding,使得.NET開發人員可以使用C#在跨平臺的.NET Standard框架上開發、訓練和部署機器學習模型。他們還打造了TensorFlow.NET這個專屬於.NET開發人員的機器學習平臺,簡化了使用TensorFlow的過程。   本書即是針對這個族群的使用者,讓.NET眾多的使用者直接跨入AI的領域,在最親切的環境學習,一定會事半功倍。   本書為介紹TensorFlow.NET的詳細指南,共有23章。探討雲端運算、人工智慧、巨量資料和雲端原生應用對生活產生了深遠影響,之後說明機器學習.NET開發者的特點,在.NET生態中,SciSharp Stack的團隊,為TensorFlow提供了.NET Standard Binding,使.NET開發人員可以使用C#開發、訓練和部署機器學習模型。其中的產品就是TensorFlow.NET。   書中包括資料型態與張量詳解、Eager Mode詳解、自動求導原理與應用、線性回歸實操、MNIST手寫字元分類邏輯回歸、tf.data資料集建立與前置處理、深度神經網路實踐、AutoGraph機制詳解,以及.NET Keras簡明教學等。最後一部分是生產應用與案例,包含CPU和GPU環境下的TensorFlow.NET應用、工業生產環境應用案例、在C#下使用TensorFlow.NET訓練自己的資料集、視覺影像分類、視覺物件辨識、遷移學習應用、自然語言處理以及生成對抗網路等。其中還包含F#應用案例。   總體來說,這本書提供了一個全面的指南,旨在幫助.NET開發人員在機器學習領域探索和應用TensorFlow.NET,同時介紹了許多實用的範例和案例。 目錄 第一部分 TensorFlow.NET API入門 第1章 TensorFlow.NET 介紹 1.1 TensorFlow.NET 特性 1.2 TensorFlow.NET 開放原始碼函式庫結構 第2章 資料型態與張量詳解 2.1 資料型態 2.2 張量詳解 2.3 常數與變數 2.4 字串常見操作 2.5 基本張量操作 2.6 維度變換 2.7 合併分割 2.8 廣播機制 第3章 Eager Mode詳解 3.1 Eager Mode 說明 3.2 Eager Mode 比較 3.3 Eager Mode 數值運算 3.4 Eager Mode 張量降維運算 3.5 Eager Mode 矩陣運算 3.6 print 與tf.print 特性對比 第4章 自動求導原理與應用 4.1 機器學習中的求導 4.2 簡單函式求導 4.3 複雜函式求偏導 第5章 線性迴歸實作 5.1 線性迴歸問題 5.2 TensorFlow 下的線性迴歸 5.3 C# 和Python 的性能比較 第6章 MNIST手寫數字分類邏輯迴歸 6.1 經典的MNIST 手寫數字分類問題 6.2 邏輯迴歸程式實作 第7章 tf.data資料集建立與前置處理 7.1 tf.data 介紹 7.2 tf.data 資料集建立 7.3 tf.data 資料前置處理 7.4 tf.data 資料使用 第8章 深度神經網路實踐 8.1 深度神經網路介紹 8.2 TensorFlow.NET 程式實作1:DNN with Eager 8.3 TensorFlow.NET Keras 模型架設的3 種方式 8.4 TensorFlow.NET 程式實作2:DNN with Keras 第9章 AutoGraph機制詳解 9.1 AutoGraph 機制說明 9.2 AutoGraph 機制原理 9.3 AutoGraph 程式開發規範 第二部分 .NET Keras簡明教學 第10章 Keras簡介 10.1 Keras 特性 10.2 Keras 版本說明 第11章 模型與層 11.1 Keras 常用的模型與層 11.2 自訂層 11.3 自訂模型 11.4 模型常用API 概述 第12章 Keras常用API說明 12.1 回呼函式 12.2 資料集前置處理 12.3 最佳化器 12.4 損失函式 12.5 評估指標 第13章 Keras架設模型的3種方式 13.1 Sequential API 方式 13.2 Functional API 方式 13.3 自訂模型 第14章 Keras模型訓練 14.1 內建fit 訓練 14.2 自訂訓練 第三部分 生產應用與案例 第15章 CPU和GPU環境下的TensorFlow.NET應用 15.1 CPU 和GPU 環境架設及安裝 15.2 TensorFlow.NET 的影像利器SharpCV 第16章 工業生產環境應用案例 16.1 工業機器視覺領域應用 16.2 工業時間序列預測領域應用 第17章 在C#下使用TensorFlow.NET訓練自己的資料集 17.1 專案說明 17.2 模型介紹 17.3 資料集說明 17.4 程式說明 17.5 總結 第18章 視覺影像分類 18.1 卷積神經網路實現影像分類 18.2 卷積神經網路詳解 18.3 深入了解卷積神經網路 第19章 視覺物件辨識 19.1 視覺物件辨識原理簡述 19.2 YOLO v3 模型推理實踐 19.3 YOLO v3 模型訓練實踐 第20章 遷移學習應用 20.1 遷移學習原理簡述 20.2 Inception v3 網路 20.3 遷移學習程式實作 第21章 自然語言處理 21.1 自然語言處理簡述 21.2 詞向量 21.3 文字分類程式實作 第22章 生成對抗網路 22.1 生成對抗網路簡述 22.2 生成對抗網路實戰案例 第23章 F#應用案例 23.1 F# 簡明教學 23.2 F# 案例實踐 參考文獻

原價: 1080 售價: 972 現省: 108元
立即查看
Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems (3版)

Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems (3版)

類似書籍推薦給您

原價: 2800 售價: 2800 現省: 0元
立即查看
建構機器學習管道|運用TensorFlow實現模型生命週期自動化 Building Machine Learning Pipelines (1版)

建構機器學習管道|運用TensorFlow實現模型生命週期自動化 Building Machine Learning Pipelines (1版)

類似書籍推薦給您

內容簡介   「本書是一本出色的參考資料,全面介紹ML產品系統,特別關注TFX。它包含最準確的資訊,並提供清晰、簡潔的解釋案例。」   —Robert Crowe   TensorFlow Developer Advocate, Google   公司在機器學習專案上耗費巨資,但如果不能有效地部署模型,無疑是在浪費金錢。在本書中,Hannes Hapke和Catherine Nelson將帶領您瞭解使用TensorFlow生態系統自動化機器學習管道的步驟。您將學習到將部署時間從幾天縮短到幾分鐘的技術和工具,進而更專注新模型的開發,而不是維護舊有的系統。   數據科學家、機器學習工程師和DevOps工程師將發現如何超越模型開發,成功地將他們的數據科學項目產品化,而管理人員將更瞭解他們在加速這些專案項目所扮演的角色。   ‧瞭解構建機器學習管道的步驟   ‧使用TensorFlow Extended中的組件建構您的管道   ‧使用Apache Beam、Apache Airflow和Kubeflow管道來協作您的機器學習管道   ‧使用TensorFlow數據驗證和TensorFlow轉換來處理數據   ‧使用TensorFlow模型驗證對模型進行詳細分析   ‧檢驗模型表現的公平性和偏誤性   ‧使用TensorFlow Serving或TensorFlow Lite為移動設備部署模型   ‧學習隱私保護(privacy-preserving)機器學習技術 目錄 第一章 導論 第二章 TensorFlow Extended 簡介 第三章 數據擷取 第四章 數據驗證 第五章 資料預處理 第六章 模型訓練 第七章 模型分析與驗證 第八章 TensorFlow Serving 的模型部署 第九章 TensorFlow Serving 的高級模型部署 第十章 進階 TensorFlow Extended 第十一章 管道第一部分:Apache Beam 與 Apache Airflow 第十二章 管道第二部分:Kubeflow 管道 第十三章 反饋循環 第十四章 機器學習的數據隱私 第十五章 管道的未來與下一步 附錄A 機器學習基礎架構介紹 附錄B 在 Google Cloud 上設置 Kubernetes 集群 附錄C 操作 Kuberflow 管道的技巧

原價: 580 售價: 493 現省: 87元
立即查看