深度學習詳解|台大李宏毅老師機器學習課程精粹 (1版)
類似書籍推薦給您
【簡介】
台灣大學電機工程學系 李宏毅教授 ~專文推薦~
很高興看到Datawhale的王琦、楊毅遠、江季等同學將我的線上錄影轉化為可閱讀的教材,他們的努力使我的教學內容能接觸更多學子。希望這本書能幫助更多人探索深度學習領域,激發更多學子對這個領域的興趣和熱情。
■ 名師授課精華,一本掌握深度學習核心觀念
台灣大學電機工程學系李宏毅教授開設的「機器學習」與「生成式AI」課程在YouTube上廣受歡迎,累積超過30萬訂閱,影響力橫跨學界與業界。
本書依據李宏毅教授「機器學習」課程中與深度學習相關的內容編寫,並融合近年課程更新重點,為AI學習者提供最完整、最系統化的深度學習知識架構。
■ 從基礎到進階,完整呈現深度學習關鍵知識
內容包括了深度學習的基礎知識、類神經網路的訓練技巧、生成模型、自監督學習(包括 BERT 和 GPT)、擴散模型、元學習、神經網路壓縮等。此外,還探討了如何解決類神經網路訓練中的常見問題,如局部最小值、鞍點、批次與動量、自動調整學習速率等。
■ 理論實務兼具,打造易懂又實用的學習體驗
在理論嚴謹的基礎上,本書保留了課程中大量生動有趣的例子,幫助讀者從生活化的角度瞭解深度學習的概念、建模過程與核心演算法細節。適合對深度學習感興趣,想要入門深度學習的讀者閱讀,更可作為深度學習相關課程的教材。
王琦
上海交通大學人工智能教育部重點實驗室博士研究生,碩士畢業於中國科學院大學。Datawhale成員,《Easy RL:強化學習教程》作者,英特爾邊緣計算創新大使,Hugging Face社區志願者,AI TIME成員。主要研究方向為強化學習、計算機視覺、深度學習。曾獲「中國光谷.華為杯」第十九屆中國研究生數學建模競賽二等獎、中國大學生計算機設計大賽二等獎、亞太地區大學生數學建模競賽(APMCM)二等獎,並發表多篇SCI/EI論文。
楊毅遠
牛津大學計算機系博士研究生,碩士畢業於清華大學。Datawhale成員,《Easy RL:強化學習教程》作者。主要研究方向為時間序列、資料探勘、智能傳感系統及深度學習。曾獲中國國家獎學金、北京市優秀畢業生、清華大學優秀碩士學位論文及中國大學生智能汽車競賽總冠軍等榮譽,並發表多篇SCI/EI論文。
江季
網易高級算法工程師,碩士畢業於北京大學。Datawhale成員,《Easy RL:強化學習教程》作者。主要研究方向為強化學習、深度學習、大模型及機器人等。曾獲中國國家獎學金、上海市優秀畢業生等榮譽,並取得多項強化學習與遊戲AI相關專利。
【目錄】
chapter 1 機器學習基礎
1.1 案例學習
1.2 線性模型
chapter 2 實踐方法論
2.1 模型偏差
2.2 最佳化問題
2.3 過擬合
2.4 交叉驗證
2.5 不匹配
chapter 3 深度學習基礎
3.1 局部最小值與鞍點
3.2 批次和動量
3.3 自適化學習率
3.4 學習率排程
3.5 最佳化總結
3.6 分類
3.7 批次正規化
chapter 4 卷積神經網路
4.1 觀察 1:檢測模式不需要整幅圖片
4.2 簡化 1:感知域
4.3 觀察 2:同樣的模式可能出現在圖片的不同區域
4.4 簡化 2:共用參數
4.5 簡化 1 和簡化 2 的總結
4.6 觀察 3:降取樣不影響模式檢測
4.7 簡化 3:池化
4.8 卷積神經網路的應用:下圍棋
chapter 5 遞迴神經網路
5.1 獨熱編碼
5.2 什麼是 RNN
5.3 RNN 架構
5.4 其他 RNN
5.5 LSTM 網路原理
5.6 RNN 的學習方式
5.7 如何解決 RNN 的梯度消失或梯度爆炸問題
5.8 RNN 的其他應用
chapter 6 自注意力機制
6.1 輸入是向量序列的情況
6.2 自注意力機制的運作原理
6.3 多頭自注意力
6.4 位置編碼
6.5 截斷自注意力
6.6 對比自注意力與卷積神經網路
6.7 對比自注意力與遞迴神經網路
chapter 7 Transformer
7.1 序列到序列模型
7.2 Transformer 結構
7.3 Transformer 編碼器
7.4 Transformer 解碼器
7.5 編碼器—解碼器注意力
7.6 Transformer 的訓練過程
7.7 序列到序列模型訓練常用技巧
chapter 8 生成模型
8.1 生成對抗網路
8.2 生成器與判別器的訓練過程
8.3 GAN 的應用案例
8.4 GAN 的理論介紹
8.5 WGAN 演算法
8.6 GAN 訓練的困難點與技巧
8.7 GAN 的效能評估方法
8.8 條件型生成
8.9 CycleGAN
chapter 9 擴散模型
9.1 擴散模型產生圖片的過程
9.2 降噪模組
9.3 訓練雜訊預測器
chapter 10 自監督學習
10.1 BERT
10.2 GPT
chapter 11 自動編碼器
11.1 自動編碼器的概念
11.2 為什麼需要自動編碼器
11.3 降噪自動編碼器
11.4 自動編碼器應用之特徵解離
11.5 自動編碼器應用之離散隱性表徵
11.6 自動編碼器的其他應用
chapter 12 對抗式攻擊
12.1 對抗式攻擊簡介
12.2 如何進行網路攻擊
12.3 快速梯度符號法
12.4 白箱攻擊與黑箱攻擊
12.5 其他模態資料被攻擊案例
12.6 現實世界中的攻擊
12.7 防禦方式中的被動防禦
12.8 防禦方式中的主動防禦
chapter 13 轉移學習
13.1 領域偏移
13.2 領域自適應
13.3 領域概化
chapter 14 增強式學習
14.1 增強式學習的應用
14.2 增強式學習框架
14.3 評價動作的標準
chapter 15 元學習
15.1 元學習的概念
15.2 元學習的三個步驟
15.3 元學習與機器學習
15.4 元學習的實例演算法
15.5 元學習的應用
chapter 16 終身學習
16.1 災難性遺忘
16.2 終身學習的評估方法
16.3 終身學習問題的主要解法
1chapter 17 網路壓縮
17.1 網路修剪
17.2 知識蒸餾
17.3 參數量化
17.4 網路架構設計
17.5 動態計算
chapter 18 可解釋性機器學習
18.1 可解釋性人工智慧的重要性
18.2 決策樹模型的可解釋性
18.3 可解釋性機器學習的目標
18.4 可解釋性機器學習中的局部解釋
18.5 可解釋性機器學習中的全局解釋
18.6 擴充與小結
chapter 19 ChatGPT
19.1 ChatGPT 簡介和功能
19.2 對 ChatGPT 的誤解
19.3 ChatGPT 背後的關鍵技術—預訓練
19.4 ChatGPT 帶來的研究問題
立即查看
精確掌握 AI 大趨勢!深度學習技術解密:日本 AI 神人,帶你正確學會從機器學習到生成式 AI 的核心基礎 (1版)
類似書籍推薦給您
【簡介】
▍專業推薦 (依姓名筆劃排列)
王道維|國立清華大學物理系教授 / 人文社會 AI 應用與發展研究中心副主任
林筱玫|台灣人工智慧協會執行長
劉育維|人工智慧解決方案專家暨網路作家
▍獨角獸新創公司 Preferred Networks 創辦人
▍2022 年日本「現代の名工」獲獎者
▍閱讀千篇論文的深厚學識精華
✧✦AI 神人親自講解深度學習的技術奧秘!✦✧
千變萬化的 AI 應用,核心都是「深度學習」。
掌握深度學習,才能迎接 AI 世代的新挑戰!
【基礎概念:深度學習的特色、與機器學習的不同】
認識機器學習的不同類型,詳細瞭解神經網路、特徵學習、反向傳播,如何使深度學習脫穎而出。
【發展進化:正規化層、跳躍連接、注意力單元】
深入解說這三項核心技術的數學原理,認識深度學習克服各種困難、大幅進化的歷程。
【實際應用:影像辨識、語音辨識、自然語言處理】
綜合以上基礎,說明深度學習從輸入到輸出完整執行實際任務的過程,以及各種基礎技術在不同應用領域所擔任的重要角色。
【技術回顧:AI 發展的坎坷與突破】
早在 1956 年提出的 AI,為何數十年間乏人問津?深度學習又是如何重燃 AI 的火種?回顧 AI 發展,更能洞察未來方向。
★特別收錄:精選基礎數學★
把學校的數學課忘光了也不用怕!附錄彙整深度學習的必要數學知識,有疑問隨時翻閱,回頭立刻跟上大師講解。
本書不含:
✗走馬看花的簡略介紹
✗只用大量文字描述數學概念
✗只挑知名的技術做單元介紹
本書注重:
✓各技術運作方式的詳盡解說與參考文獻
✓大量圖片表達技術要旨、實際數學式演示過程
✓各技術發展背景與傳承脈絡,描繪深度學習的改革史
✧✦探索 AI 奧祕絕不該錯過的精采好書!✦✧
本書特色:
◆難度由淺入深,從基礎數學開始紮穩根基
書中數學式從符號開始一一解說,各種計算及推導都仔細說明,書末更附上基礎數學補充,數學課忘光也不怕
◆核心關鍵技術一網打盡,完整掌握深度學習
學習模型 / 損失函數 / 梯度下降法 / 反向傳播 / 卷積層 / 循環層 / 閘控機制 / 激活函數 / 正規化 / 跳躍連接 / 注意力單元……核心技術全面涵蓋
◆插圖、文字、數學式,三管齊下詳盡講解
- 以圖示勾勒整體概念
- 以文字解構問題並說明思路
- 以數學式演示技術流程
3 方向完整拆解、充分理解,讀懂原理不必再囫圇吞棗
◆從背景到傳承,清楚描繪技術發展脈絡
偉大的技術,即是解決過去的問題,並提出未來的問題;本書清楚描繪核心技術環環相扣的進化史,更能展望 AI 未來的新發展
【目錄】
第 1 章 深度學習與人工智慧
為何深度學習能夠成功
1.1 何謂深度學習?什麼是人工「智慧」?
1.2 深度學習迅速發展的背景
1.3 深度學習的計算資源
1.4 人工智慧的歷史
1.5 未來將如何應用深度學習?
1.6 本章小結
第 2 章 機器學習入門
何謂電腦的「學習」?
2.1 機器學習的背景知識
2.2 模型、參數與資料
2.3 普適能力 — 能否處理未知資料?
2.4 學習的方法 — 監督式學習、非監督式學習與強化式學習
2.5 問題設定的分類學
2.6 機器學習的基本 — 了解機器學習的各種概念
2.7 以機率模型理解機器學習
2.8 本章小結
第 3 章 深度學習的技術基礎
組合資料轉換的「層」實現特徵學習的效果
3.1 特徵學習 — 「標示特徵」的重要性及挑戰
3.2 深度學習的基礎知識
3.3 神經網路是什麼樣的模型?
3.4 神經網路的學習
3.5 反向傳播 — 有效率地計算梯度
3.6 神經網路的主要組成元素
3.7 本章小結
第 4 章 深度學習的發展
改善學習與預測的正規化層╱跳躍連接╱注意力單元
4.1 將「學習」由理論化為現實的基礎技術 — 類似ReLU的激活函數
4.2 正規化層
4.3 跳躍連接
4.4 注意力單元 — 根據輸入,動態改變資料傳遞方式
4.5 本章小結
第 5 章 深度學習的應用技術
大幅進化的影像辨識、語音辨識、自然語言處理
5.1 影像辨識
5.2 語音辨識
5.3 自然語言處理
5.4 本章小結
附錄 精選基礎
深度學習所需的數學概念
A.1 線性代數
A.2 微分
A.3 機率
立即查看
一本精通: LINE BOT+Python+Google Dialogflow打造全方位AI機器人
類似書籍推薦給您
立即查看
Smaller C|用於小型機器之精實程式碼 (1版)
類似書籍推薦給您
內容簡介
「無論是C的新手或IoT開發人員,《Smaller C》的讀者都能在數小時內為微控制器編寫出精實、乾淨、高效率的C程式。」
—Tony Crawford
《C in a Nutshell》的合著者
「《Smaller C》提醒了我,當程式設計回歸到最基本的時候,確實是非常有趣的。」
—Alex Faber
軟體開發人員
對於希望從最小型到較大型微控制器中獲得最高效能的製造商來說,C語言仍然是最佳選擇。這本實用書籍為任何從事微控制器程式設計的人提供了C基礎知識的堅實基礎。您將探索C如何讓開發人員和製造商能夠從微型裝置中獲得巨大成果的多種方式。
作者Marc Loy向您展示了如何從頭開始編寫乾淨、可維護的C程式碼。這種語言及其同類語言C++仍廣泛被用於為裝置驅動程式或作業系統編寫的低階程式碼。透過理解C的語法及其怪癖,您將獲得持久的電腦語言素養,這將幫助您更輕鬆地掌握新的語言和風格。
‧學習C的基礎知識,例如資料型別、流程控制和函數
‧探索記憶體管理,包括程式是如何在小型裝置上執行的
‧理解Reddit或Stack Overflow等線上論壇中所提供的答案
‧編寫既可讀又可維護的高效率客製化C程式碼
‧分析程式碼的效能並進行是否優化的取捨
‧評估在您自己的專案中使用的第三方程式庫
‧建立您自己的程式庫並與他人分享
產品目錄
前言
第一章 C 的基礎知識
第二章 儲存和敘述
第三章 控制流程
第四章 位元和(許多)位元組
第五章 函數
第六章 指標和參照
第七章 程式庫
第八章 真實世界的 C 與 Arduino
第九章 較小的系統
第十章 更快的程式碼
第十一章 客製化程式庫
第十二章 下個下一步
附錄A 硬體和軟體
附錄B printf() 格式說明符詳細資訊
立即查看
微機電系統技術與應用 (上.下冊不分售)
類似書籍推薦給您
原價:
1200
售價:
1140
現省:
60元
立即查看