Python 函式庫語法範例字典
相關熱銷的書籍推薦給您
商品描述
<內容簡介>
彙整最常使用的 Python 函式庫語法
功能索引 + 字母順序查詢,
隨查隨用, 快速解決問題!
Python 是近來非常熱門的程式語言, 原因之一就是具有豐富的標準函式庫及第三方套件可以使用, 用途涵蓋字串處理、數值計算、資料壓縮與封存、XML與 JSON 存取等層面。本書集合 Python 常用的函式及模組功能, 依用途分門別類, 提供詳細的使用說明、豐富的語法範例, 讓使用者可以在短時間內找到、學會函式的正確使用方式, 在撰寫程式時更加得心應手!
<本書特色>
● 依功能分類, 每個函式都以豐富範例實際演練用法
● 目錄上列有函式名稱與用途說明, 可依據名稱或是用途查詢
● 可依字母順序快速查詢想使用的函式功能
● 本書嚴選的模組功能包括:
argparse/array/base64/beautifulsoup4/bisect/bz2/collections/ConfigParser/csv/datetime/dateutil/decimal/doctest/email/enum/fnmatch/glob/gzip/heapg/io/itertools/json/logging/lxml/lzma/math/multiprocessing/openpyxl/os/pathlib/paramiko/pdb/Pillow/pprint/PyCrypto/pydoc/pytest/pytz/random/re/requests/shutil/statistics/subprocess/sys/tartile/tempfile/time/timeit/traceback/unicodedata/unittest/unittest.mock/urllib.parse/weakref/xml.etree.ElementTree/yaml/zipfile/zlib
● 適用 Python 3
立即查看
必學! Python資料科學.機器學習最強套件: NumPy、Pandas、Matplotlib、OpenCV、Scikit-learn、tf.Keras
類似書籍推薦給您
必學!Python資料科學‧機器學習最強套件-NumPy、Pandas、Matplotlib、OpenCV、scikit-learn、tf.Keras
ISBN13:9789863126157
出版社:旗標出版社
作者:石川聡彥-著;施威銘研究室-監修
譯者:劉金讓
裝訂/頁數:平裝/448頁
規格:23cm*17cm*2.8cm (高/寬/厚)
重量:982克
版次:1
出版日:2021/04/19
中國圖書分類:電腦程式語言
內容簡介
最夯的 Python 套件解說 ✕ 最夯的資料科學、機器學習技術,
本書帶您一次學會!
Python 是近來最熱門的程式語言, 也是資料科學、機器學習實作時的首選語言。Python 之所以在這些領域大放異彩, 就是仰賴了各種功能強大的第三方套件, 不過套件百百款, 該從哪些下手呢?很簡單, 很少用到的先不用花太多時間, 我們挑常用、關鍵的先學好!本書為有志於學習資料科學、機器學習的初學者, 嚴選出 NumPy、Pandas、Matplotlib、OpenCV、scikit-learn、tf.Keras 等最強套件, 絕對是初學者必須好好掌握的!
NumPy 數值運算套件可以做資料高速運算, 許多套件也都是以 NumPy 為基礎建構而成, 經常得跟 NumPy 搭配使用, 一定要紮穩這個重要基石;
在面對龐大的資料時, 使用 Pandas、Matplotlib 可以輕鬆做資料整理, 並藉由繪圖獲取重要資訊, 是資料科學實作的強大利器;
OpenCV 是電腦視覺 (Computer Vision) 領域響叮噹的套件, 不管是裁切、縮放、輪廓偵測、過濾影像以強化資訊...各種影像處理功能一應俱全, 是影像辨識、機器學習做資料擴增的最強助手;
最後, 我們將帶您一窺 scikit-learn、tf.Keras 這兩個重量級套件如何在機器學習、深度學習領域中發揮關鍵性的作用, 我們會實際操演如何利用它們做資料預處理 (Preprocessing)、建構 KNN / SVM / 邏輯斯迴歸 (Logistic regression) / 決策樹 (Decision tree) / 隨機森林 (Random forest)…等監督式學習分類模型;以及建立 DNN、CNN 等影像辨識神經網路 (Neural network)。
看了本書之後, 你將深刻體會到各套件的強大之處, 利用短短幾行程式碼, 竟然瞬間完成許多運算、建模工作。不過各套件的函式、參數設定可不像網路文章寫的這麼單純, 當中有許多設定「眉角」需要特別注意, 為此, 小編都經過逐一詳測, 針對可能遇到的問題添加大量註解, 幫助讀者更加理解內容!
本書特色
□資料科學熱門套件解說
‧紮穩 NumPy 重要基礎:axis、dimention、陣列切片、各種高速運算函式
‧Pandas 資料分析技巧:資料清理、缺失值處理、快速取得各種統計數據
‧Matplotlib 資料視覺化:繪製 2D / 3D 圖 / 子圖、比較資料的分布狀況
‧OpenCV 影像處理:影像裁切 / 縮放 / 翻轉...做資料擴增, 二值化 (binarization) / 降雜訊...強化重要影像資訊
□最紮實的機器學習、深度學習實戰
‧機器學習的資料預處理 (Data preprocessing)
‧快速建構 KNN / SVM / 邏輯斯迴歸 (Logistic regression) / 決策樹 (Decision tree) / 隨機森林 (Random forest)...監督式學習分類模型
‧建立 DNN、CNN 影像辨識神經網路 (Neural network)
‧建模完只是第一步!各模型超參數 (Hyperparameter) 調整心法大公開!
□本書由【施威銘研究室監修】, 書中針對原書進行大量補充, 並適當添加註解, 幫助讀者更加理解內容!
目錄
第 1 章 Python 基礎:變數、 資料型別與 if 判斷式
第 2 章 Python 基礎:list、dict 與迴圈
第 3 章 函式、 類別與模組
第 4 章 進階函式及特殊容器
第 5 章 NumPy 高速運算套件
5-1 NumPy 的基本介紹
5-2 陣列的基本操作
5-2-1 建立陣列
5-2-2 陣列的切片操作
5-2-3 使用布林陣列篩選值
5-2-4 陣列的四則計算
5-2-5 體驗好用的 NumPy 函式
5-3 NumPy 多軸陣列
5-3-1 陣列的軸 (axis)
5-3-2 陣列的 shape
5-3-3 多軸陣列的切片做法
5-3-4 陣列轉置 (transpose)
5-3-5 陣列排序
5-3-6 陣列擴張 (Broadcasting)
5-3-7 用 NumPy 函式計算矩陣乘積
第 6 章 pandas 的基礎
6-1 pandas 簡介
6-2 Series 物件的操作處理
6-2-1 建立 Series 物件
6-2-2 取出 Series 當中的元素
6-2-3 單取出「索引值」或者「內容值」-.index、.values
6-2-4 新增 Series 物件的元素–append()
6-2-5 刪除 Series 物件的元素–drop()
6-2-6 從 Series 物件篩選出想要的元素
6-2-7 將 Series 的元素排序–sort_index()、 sort_values()
6-3 DataFrame 物件的操作處理
6-3-1 建立 DataFrame 物件–pd.DataFrame()
6-3-2 修改 index 和 column 的名稱–.index、.column
6-3-4 加入新的資料列–append()
6-3-4 加入新的欄位
6-3-5 取出 DataFrame 當中的元素–df.loc[]、df.iloc[]
6-3-6 刪除 df 物件的列或行–drop()
6-3-7 將欄位值依大小排序–sort_values()
6-3-8 從 df 物件篩選出想要的資料
第 7 章 DataFrame 的串接與合併
7-1 概念說明
7-2 用 concat() 串接多個 DataFrame
7-3 用 merge() 合併多個 DataFrame
第 8 章 DataFrame 的進階應用
8-1 載入外部檔案並做資料整理
8-2 處理 DataFrame 中的缺失值
8-2-1 用 dropna() 刪除含有 NaN (缺失值) 的列
8-2-2 用 fllna() 填補 NaN 值
8-3 分析數據常用到的技巧 (一)
8-3-1 duplicated()、drop_duplicated() - 尋找或刪除 DataFrame 內重複的資料
8-3-2 map()–利用 DataFrame 的既有欄位生成新的欄位
8-3-3 用 cut() 劃分、篩選資料
8-4 分析數據常用到的技巧 (二)
8-4-1 取頭尾列–head()、tail()
...
立即查看