書名: A Guide to Monte Carlo Simulations in Statistical Physics (2版)
作者: D.P.LANDAU
版次: 2
ISBN: 9780521842389
出版社: Cambridge
出版日期: 2005/01
書籍開數、尺寸: 17.8x25.4x1.3
頁數: 432
#物理學
#自然科學
定價: 1250
售價: 500
庫存: 已售完
LINE US!
此書為本公司代理,目前已售完,有需要可以向line客服詢問進口動向

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

詳細資訊

This new and updated edition deals with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics, statistical mechanics, and related fields. After briefly recalling essential background in statistical mechanics and probability theory, it gives a succinct overview of simple sampling methods. The concepts behind the simulation algorithms are explained comprehensively, as are the techniques for efficient evaluation of system configurations generated by simulation. It contains many applications, examples, and exercises to help the reader and provides many new references to more specialized literature. This edition includes a brief overview of other methods of computer simulation and an outlook for the use of Monte Carlo simulations in disciplines beyond physics. This is an excellent guide for graduate students and researchers who use computer simulations in their research. It can be used as a textbook for graduate courses on computer simulations in physics and related disciplines.

為您推薦

Simulation and Monte Carlo with Applications in Finance and MCMC 2007 (JW) 978-0-470-85495-2

Simulation and Monte Carlo with Applications in Finance and MCMC 2007 (JW) 978-0-470-85495-2

其他會員也一起購買

<特價399> Simulation and Monte Carlo with Applications in Finance and MCMC 2007 (JW) 978-0-470-85495-2 作者: J.S.DAGPUNAR 版次:1 ISBN:9780470854952 年份:2007 出版社:John Wiley

原價: 1250 售價: 407 現省: 843元
立即查看
機器學習實務:資料科學工作流程與應用程式開發及最佳化

機器學習實務:資料科學工作流程與應用程式開發及最佳化

其他會員也一起購買

序 前言 關於作者 【PART I基本結構】 chapter 01資料科學家的角色 1.1 介紹 1.2 資料科學家的角色 1.3 結論 chapter 02專案工作流程 2.1 介紹 2.2 資料團隊背景 2.3 敏捷開發與產品專注 2.4 結論 chapter 03誤差量化 3.1 介紹 3.2 量化測量值誤差 3.3 採樣誤差 3.4 誤差傳播 3.5 結論 chapter 04資料編碼與預處理 4.1 介紹 4.2 簡單文字處理 4.3 資訊損失 4.4 結論 chapter 05假設檢定 5.1 介紹 5.2 何謂假設? 5.3 誤差類型 5.4 P 值與信賴區間 5.5 多重測試與 "P-hacking" 5.6 範例 5.7 規劃與背景 5.8 結論 chapter 06資料視覺化 6.1 介紹 6.2 分佈與摘要統計 6.3 時間序列圖 6.4 圖視覺化 6.5 結論 【PART II 演算法與架構】 chapter 07演算法與架構 7.1 介紹 7.2 架構 7.3 模型 7.4 結論 chapter 08比較 8.1 介紹 8.2 Jaccard 距離 8.3 MinHash 8.4 Cosine 相似度 8.5 馬氏距離 8.6 結論 chapter 09迴歸 9.1 介紹 9.2 線性最小平方 9.3 線性迴歸的非線性迴歸 9.4 隨機森林 9.5 結論 chapter 10分類與群集 10.1 介紹 10.2 邏輯迴歸 10.3 貝葉斯推論,單純貝葉斯 10.4 K 平均 10.5 領先特徵向量 10.6 貪婪 Louvain 10.7 最近鄰居 10.8 結論 chapter 11貝葉斯網路 11.1 介紹 11.2 因果圖、條件獨立、Markovity 11.3 D 分離與 Markov 性質 11.4 貝葉斯網路因果圖 11.5 模型適配 11.6 結論 chapter 12降維與潛在變項模型 12.1 介紹 12.2 先驗 12.3 因素分析 12.4 主成分分析 12.5 獨立成分分析 12.6 隱含狄利克雷分布 12.7 結論 chapter 13因果推論 13.1 介紹 13.2 實驗 13.3 觀察:一個例子 13.4 控制阻斷非因果路徑 13.5 機器學習估計量 13.6 結論 chapter 14進階機器學習 14.1 介紹 14.2 最佳化 14.3 神經網路 14.4 結論 【PART III 瓶頸與最佳化】 chapter 15硬體基礎知識 15.1 介紹 15.2 隨機存取記憶體 15.3 非揮發性/固定儲存 15.4 吞吐量 15.5 處理器 15.6 結論 chapter 16軟體基礎知識 16.1 介紹 16.2 換頁 16.3 編索引 16.4 顆粒度 16.5 強固性 16.6 擷取、轉換、載入 16.7 結論 chapter 17軟體架構 17.1 介紹 17.2 主從架構 17.3 N 層/服務導向架構 17.4 微服務 17.5 一大塊 17.6 實際案例(混合架構) 17.7 結論 chapter 18CAP 定理 18.1 介紹 18.2 一致性/同時性 18.3 可用性 18.4 分割容錯 18.5 結論 chapter 19邏輯網路拓撲節點 19.1 介紹 19.2 網路圖 19.3 負載平衡 19.4 快取 19.5 資料庫 19.6 佇列 19.7 結論 參考書

原價: 580 售價: 493 現省: 87元
立即查看
THERMAL PHYSICS(台灣版) (2版)

THERMAL PHYSICS(台灣版) (2版)

相關熱銷的書籍推薦給您

【原文書】 書名:Thermal Physics 2/E 作者:Charles Kittel ISBN:0716710889 Synopsis CONGRATULATIONS TO HERBERT KROEMER, 2000 NOBEL LAUREATE FOR PHYSICS For upper-division courses in thermodynamics or statistical mechanics, Kittel and Kroemer offers a modern approach to thermal physics that is based on the idea that all physical systems can be described in terms of their discrete quantum states, rather than drawing on 19th-century classical mechanics concepts. "synopsis" may belong to another edition of this title.

原價: 700 售價: 700 現省: 0元
立即查看
PRINCIPLES OF QUANTUM MECHANICS (2版)

PRINCIPLES OF QUANTUM MECHANICS (2版)

相關熱銷的書籍推薦給您

【原文書】 書名:Principles of Quantum Mechanics 2/e 作者:R. Shankar 出版社:Kluwer Academic Plenum Publishers ISBN:9780306447907 About this Textbook Reviews from the First Edition: "An excellent text … The postulates of quantum mechanics and the mathematical underpinnings are discussed in a clear, succinct manner." (American Scientist) "No matter how gently one introduces students to the concept of Dirac’s bras and kets, many are turned off. Shankar attacks the problem head-on in the first chapter, and in a very informal style suggests that there is nothing to be frightened of." (Physics Bulletin) Reviews of the Second Edition: "This massive text of 700 and odd pages has indeed an excellent get-up, is very verbal and expressive, and has extensively worked out calculational details---all just right for a first course. The style is conversational, more like a corridor talk or lecture notes, though arranged as a text. … It would be particularly useful to beginning students and those in allied areas like quantum chemistry." (Mathematical Reviews) R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.

原價: 1200 售價: 1200 現省: 0元
立即查看
LECTURES IN PARTICLE PHYSICS

LECTURES IN PARTICLE PHYSICS

相關熱銷的書籍推薦給您

The aim of this book on particle physics is to present the theory in a simple way. The style and organization of the material is unique in that intuition is employed, not formal theory or the Monte Carlo method. This volume attempts to be more physical and less abstract than other texts without degenerating into a presentation of data without interpretation.This book is based on four courses of lectures conducted at Fermilab. It should prove very useful to advanced undergraduates and graduate students.

原價: 950 售價: 475 現省: 475元
立即查看
THERMODYNAMICS & AN INTRODUCTION TO THERMOSTATISTICS (2版)

THERMODYNAMICS & AN INTRODUCTION TO THERMOSTATISTICS (2版)

相關熱銷的書籍推薦給您

The only text to cover both thermodynamic and statistical mechanics--allowing students to fully master thermodynamics at the macroscopic level. Presents essential ideas on critical phenomena developed over the last decade in simple, qualitative terms. This new edition maintains the simple structure of the first and puts new emphasis on pedagogical considerations. Thermostatistics is incorporated into the text without eclipsing macroscopic thermodynamics, and is integrated into the conceptual framework of physical theory.

原價: 1750 售價: 1750 現省: 0元
立即查看
A Guide to Monte Carlo Simulations in Statistical Physics (5版)

A Guide to Monte Carlo Simulations in Statistical Physics (5版)

類似書籍推薦給您

A Guide to Monte Carlo Simulations in Statistical Physics ISBN13:9781108490146 出版社:Cambridge Univ Pr 作者:David Landau 裝訂/頁數:精裝/578頁 版次:5 出版日:2021/02/28

原價: 1680 售價: 1680 現省: 0元
立即查看
A GUIDE TO MONTE CARLO SIMULATIONS IN STATISTICAL PHYSICS 2000 (CAM> 0-521-65366-5

A GUIDE TO MONTE CARLO SIMULATIONS IN STATISTICAL PHYSICS 2000 (CAM> 0-521-65366-5

類似書籍推薦給您

原價: 1900 售價: 1900 現省: 0元
立即查看
QUQNTITATIVE RISK ANALYSIS A GUIDE TO MINTE CARLO SIMULATION MODELING

QUQNTITATIVE RISK ANALYSIS A GUIDE TO MINTE CARLO SIMULATION MODELING

類似書籍推薦給您

原價: 2231 售價: 2231 現省: 0元
立即查看
A GUIDE TO GENETIC COUNSELING, 3RD EDITION (1版)

A GUIDE TO GENETIC COUNSELING, 3RD EDITION (1版)

類似書籍推薦給您

原價: 1500 售價: 1500 現省: 0元
立即查看
Artificial Intelligence: A Guide to Intelligent Systems (4版)

Artificial Intelligence: A Guide to Intelligent Systems (4版)

類似書籍推薦給您

【簡介】 What are the principles behind intelligent systems? How are they built? What are intelligent systems useful for? How do we choose the right tool for the job? These questions are answered by Michael Negnevitsky’s Artificial Intelligence: A Guide to Intelligent Systems. Unlike many books on computer intelligence, which use complex computer science terminology and are crowded with complex matrix algebra and differential equations, this text demonstrates that the ideas behind intelligent systems are simple and straightforward. This text assumes little or no programming experience as it tackles topics like expert systems, fuzzy systems, artificial neural networks, evolutionary computation, knowledge engineering, and data mining. 【目錄】 Introduction to Intelligent Systems 1.1 Intelligent Machines, or What Machines Can Do 1.2 The History of Artificial Intelligence, or From the ‘Dark Ages’ to Knowledge-based Systems 1.3 Generative AI 1.4 Summary Questions for Review References Expert Systems 2.1 Introduction, or Knowledge Representation Using Rules 2.2 The Main Players in the Expert System Development Team 2.3 Structure of a Rule-based Expert System 2.4 Fundamental characteristics of an expert system 2.5 Forward Chaining and Backward Chaining Inference Techniques 2.6 MEDIA ADVISOR: A Demonstration Rule-based Expert System 2.7 Conflict Resolution 2.8 Uncertainty Management in Rule-based Expert Systems 2.9 Advantages and Disadvantages of Rule-based Expert systems 2.10 Summary Questions for Review References Fuzzy Systems 3.1 Introduction, or What Is Fuzzy Thinking? 3.2 Fuzzy Sets 3.3 Linguistic Variables and Hedges 3.4 Operations of Fuzzy Sets 3.6 Fuzzy Inference 3.7 Building a Fuzzy Expert System 3.8 Summary Questions for Review References Frame-based Systems and Semantic Networks 4.1 Introduction, or What Is a Frame? 4.2 Frames as a Knowledge Representation Technique 4.3 Inheritance in Frame-based Systems 4.4 Methods and Demons 4.5 Interaction of Frames and Rules 4.6 Buy Smart: A Frame-based Expert System 4.7 The Web of Data 4.8 RDF – Resource Description Framework and RDF Triples 4.9 Turtle, RDF Schema and OWL 4.10 Querying the Semantic Web with SPARQL 4.11 Summary Questions for Review References Artificial Neural Networks 5.1 Introduction, or How the Brain Works 5.2 The Neuron as a Simple Computing Element 5.3 The Perceptron 5.4 Multilayer Neural Networks 5.5 Accelerated Learning in Multilayer Neural Networks 5.6 The Hopfield Network 5.7 Bidirectional Associative Memory 5.8 Self-organising Neural Networks 5.9 Reinforcement Learning 5.10 Summary Questions for Review References Deep Learning and Convolutional Neural Networks 6.1 Introduction, or How “Deep” Is a Deep Neural Network? 6.2 Image Recognition or How Machines See the World 6.3 Convolution in Machine Learning 6.4 Activation Functions in Deep Neural Networks 6.5 Convolutional Neural Networks 6.6 Back-propagation Learning in Convolutional Networks 6.7 Batch Normalisation 6.8 Summary Questions for Review References Evolutionary Computation 7.1 Introduction, or Can Evolution Be Intelligent? 7.2 Simulation of Natural Evolution 7.3 Genetic Algorithms 7.4 Why Genetic Algorithms Work 7.5 Maintenance Scheduling with Genetic Algorithms 7.6 Genetic Programming 7.7 Evolution Strategies 7.8 Ant Colony Optimisation 7.9 Particle Swarm Optimisation 7.10 Summary Questions for Review References Hybrid Intelligent Systems 8.1 Introduction, or How to Combine German Mechanics with Italian Love 8.2 Neural Expert Systems 8.3 Neuro-Fuzzy Systems 8.4 ANFIS: Adaptive Neuro-Fuzzy Inference System 8.5 Evolutionary Neural Networks 8.6 Fuzzy Evolutionary Systems 8.7 Summary Questions for Review References Knowledge Engineering 9.1 Introduction, or What Is Knowledge Engineering? 9.2 Will an Expert System Work for My Problem? 9.3 Will a Fuzzy Expert System Work for My Problem? 9.4 Will a Neural Network Work for My Problem? 9.5 Will a Deep Neural Network Work for My Problem? 9.6 Will Genetic Algorithms Work for My Problem? 9.7 Will Particle Swarm Optimisation Work for My Problem? 9.8 Will a Hybrid Intelligent System Work for My Problem? 9.9 Summary Questions for Review References Data Mining and Knowledge Discovery 10.1 Introduction, or What Is Data Mining? 10.2 Statistical Methods and Data Visualisation 10.3 Principal Components Analysis 10.4 Relational Databases and Database Queries 10.5 The Data Warehouse and Multidimensional Data Analysis 10.6 Decision Trees 10.7 Association Rules and Market Basket Analysis 10.8 Summary Questions for Review References Glossary Index

原價: 1680 售價: 1596 現省: 84元
立即查看