書名: 機器學習:最強入門邁向AI高手 王者歸來 (1版)
作者: 洪錦魁
版次: 1
ISBN: 9786267569337
出版社: 深智數位
出版日期: 2024/12
頁數: 1000
定價: 1080
售價: 972
庫存: 庫存: 1
LINE US! 詢問這本書 團購優惠、書籍資訊 等

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

為您推薦

必學! Python資料科學.機器學習最強套件: NumPy、Pandas、Matplotlib、OpenCV、Scikit-learn、tf.Keras

必學! Python資料科學.機器學習最強套件: NumPy、Pandas、Matplotlib、OpenCV、Scikit-learn、tf.Keras

類似書籍推薦給您

必學!Python資料科學‧機器學習最強套件-NumPy、Pandas、Matplotlib、OpenCV、scikit-learn、tf.Keras ISBN13:9789863126157 出版社:旗標出版社 作者:石川聡彥-著;施威銘研究室-監修 譯者:劉金讓 裝訂/頁數:平裝/448頁 規格:23cm*17cm*2.8cm (高/寬/厚) 重量:982克 版次:1 出版日:2021/04/19 中國圖書分類:電腦程式語言 內容簡介 最夯的 Python 套件解說 ✕ 最夯的資料科學、機器學習技術, 本書帶您一次學會!   Python 是近來最熱門的程式語言, 也是資料科學、機器學習實作時的首選語言。Python 之所以在這些領域大放異彩, 就是仰賴了各種功能強大的第三方套件, 不過套件百百款, 該從哪些下手呢?很簡單, 很少用到的先不用花太多時間, 我們挑常用、關鍵的先學好!本書為有志於學習資料科學、機器學習的初學者, 嚴選出 NumPy、Pandas、Matplotlib、OpenCV、scikit-learn、tf.Keras 等最強套件, 絕對是初學者必須好好掌握的!   NumPy 數值運算套件可以做資料高速運算, 許多套件也都是以 NumPy 為基礎建構而成, 經常得跟 NumPy 搭配使用, 一定要紮穩這個重要基石;   在面對龐大的資料時, 使用 Pandas、Matplotlib 可以輕鬆做資料整理, 並藉由繪圖獲取重要資訊, 是資料科學實作的強大利器;   OpenCV 是電腦視覺 (Computer Vision) 領域響叮噹的套件, 不管是裁切、縮放、輪廓偵測、過濾影像以強化資訊...各種影像處理功能一應俱全, 是影像辨識、機器學習做資料擴增的最強助手;   最後, 我們將帶您一窺 scikit-learn、tf.Keras 這兩個重量級套件如何在機器學習、深度學習領域中發揮關鍵性的作用, 我們會實際操演如何利用它們做資料預處理 (Preprocessing)、建構 KNN / SVM / 邏輯斯迴歸 (Logistic regression) / 決策樹 (Decision tree) / 隨機森林 (Random forest)…等監督式學習分類模型;以及建立 DNN、CNN 等影像辨識神經網路 (Neural network)。   看了本書之後, 你將深刻體會到各套件的強大之處, 利用短短幾行程式碼, 竟然瞬間完成許多運算、建模工作。不過各套件的函式、參數設定可不像網路文章寫的這麼單純, 當中有許多設定「眉角」需要特別注意, 為此, 小編都經過逐一詳測, 針對可能遇到的問題添加大量註解, 幫助讀者更加理解內容! 本書特色   □資料科學熱門套件解說   ‧紮穩 NumPy 重要基礎:axis、dimention、陣列切片、各種高速運算函式   ‧Pandas 資料分析技巧:資料清理、缺失值處理、快速取得各種統計數據   ‧Matplotlib 資料視覺化:繪製 2D / 3D 圖 / 子圖、比較資料的分布狀況   ‧OpenCV 影像處理:影像裁切 / 縮放 / 翻轉...做資料擴增, 二值化 (binarization) / 降雜訊...強化重要影像資訊   □最紮實的機器學習、深度學習實戰   ‧機器學習的資料預處理 (Data preprocessing)   ‧快速建構 KNN / SVM / 邏輯斯迴歸 (Logistic regression) / 決策樹 (Decision tree) / 隨機森林 (Random forest)...監督式學習分類模型   ‧建立 DNN、CNN 影像辨識神經網路 (Neural network)   ‧建模完只是第一步!各模型超參數 (Hyperparameter) 調整心法大公開!   □本書由【施威銘研究室監修】, 書中針對原書進行大量補充, 並適當添加註解, 幫助讀者更加理解內容! 目錄 第 1 章 Python 基礎:變數、 資料型別與 if 判斷式 第 2 章 Python 基礎:list、dict 與迴圈 第 3 章 函式、 類別與模組 第 4 章 進階函式及特殊容器 第 5 章 NumPy 高速運算套件 5-1 NumPy 的基本介紹 5-2 陣列的基本操作 5-2-1 建立陣列 5-2-2 陣列的切片操作 5-2-3 使用布林陣列篩選值 5-2-4 陣列的四則計算 5-2-5 體驗好用的 NumPy 函式 5-3 NumPy 多軸陣列 5-3-1 陣列的軸 (axis) 5-3-2 陣列的 shape 5-3-3 多軸陣列的切片做法 5-3-4 陣列轉置 (transpose) 5-3-5 陣列排序 5-3-6 陣列擴張 (Broadcasting) 5-3-7 用 NumPy 函式計算矩陣乘積 第 6 章 pandas 的基礎 6-1 pandas 簡介 6-2 Series 物件的操作處理 6-2-1 建立 Series 物件 6-2-2 取出 Series 當中的元素 6-2-3 單取出「索引值」或者「內容值」-.index、.values 6-2-4 新增 Series 物件的元素–append() 6-2-5 刪除 Series 物件的元素–drop() 6-2-6 從 Series 物件篩選出想要的元素 6-2-7 將 Series 的元素排序–sort_index()、 sort_values() 6-3 DataFrame 物件的操作處理 6-3-1 建立 DataFrame 物件–pd.DataFrame() 6-3-2 修改 index 和 column 的名稱–.index、.column 6-3-4 加入新的資料列–append() 6-3-4 加入新的欄位 6-3-5 取出 DataFrame 當中的元素–df.loc[]、df.iloc[] 6-3-6 刪除 df 物件的列或行–drop() 6-3-7 將欄位值依大小排序–sort_values() 6-3-8 從 df 物件篩選出想要的資料 第 7 章 DataFrame 的串接與合併 7-1 概念說明 7-2 用 concat() 串接多個 DataFrame 7-3 用 merge() 合併多個 DataFrame 第 8 章 DataFrame 的進階應用 8-1 載入外部檔案並做資料整理 8-2 處理 DataFrame 中的缺失值 8-2-1 用 dropna() 刪除含有 NaN (缺失值) 的列 8-2-2 用 fllna() 填補 NaN 值 8-3 分析數據常用到的技巧 (一) 8-3-1 duplicated()、drop_duplicated() - 尋找或刪除 DataFrame 內重複的資料 8-3-2 map()–利用 DataFrame 的既有欄位生成新的欄位 8-3-3 用 cut() 劃分、篩選資料 8-4 分析數據常用到的技巧 (二) 8-4-1 取頭尾列–head()、tail() ...

原價: 680 售價: 612 現省: 68元
立即查看
最踏實AI之路:全白話機器學習一次搞懂

最踏實AI之路:全白話機器學習一次搞懂

類似書籍推薦給您

最踏實AI之路:全白話機器學習一次搞懂 ISBN13:9789865501884 出版社:深智數位 作者:黄佳 裝訂/頁數:平裝/496頁 規格:23cm*17cm*2.5cm (高/寬/厚) 版次:1 出版日:2021/04/19 中國圖書分類:特殊電腦方法 內容簡介 看故事學知識,繁雜的機器學習原來這麼簡單, 從小白新手到黑帶高手,從理論數學到專案實作,在程式碼中看到自己的進步! 機器學習浪潮已達世紀高峰,你還不行動?   ▌跳出俗套、耳目一新 ▌   本書跳脫出俗套,真正從初學者角度為我們呈現了一幅人工智慧的技術畫卷,令人耳目一新。      ▌未來AI、平易近人 ▌   Al 是未來,它將重塑每個行業和領域,對於這種迎面而來的宏大變化,是臨淵羡魚還是退而結網?如果你是後者,這是一本輕鬆打開 Al 世界的入門書,書中反覆強調機器學習是非常平易近人的技術,希望大家用來解決自己工作,甚至是生活中的具體問題。   ▌實戰講解、深入淺出 ▌   本書的「實戰案例」講解得都很細膩、透徹,期待本書把機器學習技術推入「尋常百姓家」。對於線性回歸、邏輯回歸和神經網路等內容循序漸進、層層深入的理論剖析,作者用靈活的方法詮釋深奧的理論,在內容深度上也拿捏合宜。此外,本書的整合學習和強化學習部分也很精彩,簡明扼要且重點突出,概念介紹特點鮮明。   ▌易讀易懂、脈絡清晰 ▌   本書深入淺出,切入點與市面上已有的人工智慧和機器學習書迴然不同,十分易讀易懂。全書結構嚴謹、脈絡清晰,讓讀者可以輕鬆進入機器學習的殿堂。 目錄 引子 Al 菜鳥的挑戰--100 天上線智慧預警系統 01 機器學習快速上手路徑—唯有實戰 02 數學和Python 基礎知識—一天搞定 03 線性回歸—預測網店的銷售額 04 邏輯回歸—給病患和鳶尾花分類 05 深度神經網路—找出可能流失的客戶 06 卷積神經網路—辨識狗狗的圖型 07 循環神經網路—鑑定留言及探索系外行星 08 經典演算法「寶刀未老」 09 整合學習「笑傲江湖」 10 監督學習之外—其他類型的機器學習 11 強化學習實戰—咖哥的冰湖挑戰 A 尾聲-- 如何實現機器學習中的知識遷移及持續性的學習 B 練習答案

原價: 780 售價: 702 現省: 78元
立即查看
站穩AI大師的第一步: 最直覺機器學習

站穩AI大師的第一步: 最直覺機器學習

類似書籍推薦給您

原價: 780 售價: 663 現省: 117元
立即查看
深度學習詳解|台大李宏毅老師機器學習課程精粹 (1版)

深度學習詳解|台大李宏毅老師機器學習課程精粹 (1版)

類似書籍推薦給您

【簡介】 台灣大學電機工程學系 李宏毅教授 ~專文推薦~ 很高興看到Datawhale的王琦、楊毅遠、江季等同學將我的線上錄影轉化為可閱讀的教材,他們的努力使我的教學內容能接觸更多學子。希望這本書能幫助更多人探索深度學習領域,激發更多學子對這個領域的興趣和熱情。 ■ 名師授課精華,一本掌握深度學習核心觀念 台灣大學電機工程學系李宏毅教授開設的「機器學習」與「生成式AI」課程在YouTube上廣受歡迎,累積超過30萬訂閱,影響力橫跨學界與業界。 本書依據李宏毅教授「機器學習」課程中與深度學習相關的內容編寫,並融合近年課程更新重點,為AI學習者提供最完整、最系統化的深度學習知識架構。 ■ 從基礎到進階,完整呈現深度學習關鍵知識 內容包括了深度學習的基礎知識、類神經網路的訓練技巧、生成模型、自監督學習(包括 BERT 和 GPT)、擴散模型、元學習、神經網路壓縮等。此外,還探討了如何解決類神經網路訓練中的常見問題,如局部最小值、鞍點、批次與動量、自動調整學習速率等。 ■ 理論實務兼具,打造易懂又實用的學習體驗 在理論嚴謹的基礎上,本書保留了課程中大量生動有趣的例子,幫助讀者從生活化的角度瞭解深度學習的概念、建模過程與核心演算法細節。適合對深度學習感興趣,想要入門深度學習的讀者閱讀,更可作為深度學習相關課程的教材。 王琦 上海交通大學人工智能教育部重點實驗室博士研究生,碩士畢業於中國科學院大學。Datawhale成員,《Easy RL:強化學習教程》作者,英特爾邊緣計算創新大使,Hugging Face社區志願者,AI TIME成員。主要研究方向為強化學習、計算機視覺、深度學習。曾獲「中國光谷.華為杯」第十九屆中國研究生數學建模競賽二等獎、中國大學生計算機設計大賽二等獎、亞太地區大學生數學建模競賽(APMCM)二等獎,並發表多篇SCI/EI論文。 楊毅遠 牛津大學計算機系博士研究生,碩士畢業於清華大學。Datawhale成員,《Easy RL:強化學習教程》作者。主要研究方向為時間序列、資料探勘、智能傳感系統及深度學習。曾獲中國國家獎學金、北京市優秀畢業生、清華大學優秀碩士學位論文及中國大學生智能汽車競賽總冠軍等榮譽,並發表多篇SCI/EI論文。 江季 網易高級算法工程師,碩士畢業於北京大學。Datawhale成員,《Easy RL:強化學習教程》作者。主要研究方向為強化學習、深度學習、大模型及機器人等。曾獲中國國家獎學金、上海市優秀畢業生等榮譽,並取得多項強化學習與遊戲AI相關專利。 【目錄】 chapter 1 機器學習基礎 1.1 案例學習 1.2 線性模型 chapter 2 實踐方法論 2.1 模型偏差 2.2 最佳化問題 2.3 過擬合 2.4 交叉驗證 2.5 不匹配 chapter 3 深度學習基礎 3.1 局部最小值與鞍點 3.2 批次和動量 3.3 自適化學習率 3.4 學習率排程 3.5 最佳化總結 3.6 分類 3.7 批次正規化 chapter 4 卷積神經網路 4.1 觀察 1:檢測模式不需要整幅圖片 4.2 簡化 1:感知域 4.3 觀察 2:同樣的模式可能出現在圖片的不同區域 4.4 簡化 2:共用參數 4.5 簡化 1 和簡化 2 的總結 4.6 觀察 3:降取樣不影響模式檢測 4.7 簡化 3:池化 4.8 卷積神經網路的應用:下圍棋 chapter 5 遞迴神經網路 5.1 獨熱編碼 5.2 什麼是 RNN 5.3 RNN 架構 5.4 其他 RNN 5.5 LSTM 網路原理 5.6 RNN 的學習方式 5.7 如何解決 RNN 的梯度消失或梯度爆炸問題 5.8 RNN 的其他應用 chapter 6 自注意力機制 6.1 輸入是向量序列的情況 6.2 自注意力機制的運作原理 6.3 多頭自注意力 6.4 位置編碼 6.5 截斷自注意力 6.6 對比自注意力與卷積神經網路 6.7 對比自注意力與遞迴神經網路 chapter 7 Transformer 7.1 序列到序列模型 7.2 Transformer 結構 7.3 Transformer 編碼器 7.4 Transformer 解碼器 7.5 編碼器—解碼器注意力 7.6 Transformer 的訓練過程 7.7 序列到序列模型訓練常用技巧 chapter 8 生成模型 8.1 生成對抗網路 8.2 生成器與判別器的訓練過程 8.3 GAN 的應用案例 8.4 GAN 的理論介紹 8.5 WGAN 演算法 8.6 GAN 訓練的困難點與技巧 8.7 GAN 的效能評估方法 8.8 條件型生成 8.9 CycleGAN chapter 9 擴散模型 9.1 擴散模型產生圖片的過程 9.2 降噪模組 9.3 訓練雜訊預測器 chapter 10 自監督學習 10.1 BERT 10.2 GPT chapter 11 自動編碼器 11.1 自動編碼器的概念 11.2 為什麼需要自動編碼器 11.3 降噪自動編碼器 11.4 自動編碼器應用之特徵解離 11.5 自動編碼器應用之離散隱性表徵 11.6 自動編碼器的其他應用 chapter 12 對抗式攻擊 12.1 對抗式攻擊簡介 12.2 如何進行網路攻擊 12.3 快速梯度符號法 12.4 白箱攻擊與黑箱攻擊 12.5 其他模態資料被攻擊案例 12.6 現實世界中的攻擊 12.7 防禦方式中的被動防禦 12.8 防禦方式中的主動防禦 chapter 13 轉移學習 13.1 領域偏移 13.2 領域自適應 13.3 領域概化 chapter 14 增強式學習 14.1 增強式學習的應用 14.2 增強式學習框架 14.3 評價動作的標準 chapter 15 元學習 15.1 元學習的概念 15.2 元學習的三個步驟 15.3 元學習與機器學習 15.4 元學習的實例演算法 15.5 元學習的應用 chapter 16 終身學習 16.1 災難性遺忘 16.2 終身學習的評估方法 16.3 終身學習問題的主要解法 1chapter 17 網路壓縮 17.1 網路修剪 17.2 知識蒸餾 17.3 參數量化 17.4 網路架構設計 17.5 動態計算 chapter 18 可解釋性機器學習 18.1 可解釋性人工智慧的重要性 18.2 決策樹模型的可解釋性 18.3 可解釋性機器學習的目標 18.4 可解釋性機器學習中的局部解釋 18.5 可解釋性機器學習中的全局解釋 18.6 擴充與小結 chapter 19 ChatGPT 19.1 ChatGPT 簡介和功能 19.2 對 ChatGPT 的誤解 19.3 ChatGPT 背後的關鍵技術—預訓練 19.4 ChatGPT 帶來的研究問題

原價: 750 售價: 638 現省: 112元
立即查看
機器學習-從理論到實作攻略 (1版)

機器學習-從理論到實作攻略 (1版)

類似書籍推薦給您

【簡介】   本書內容兼顧理論與實務,用大量示意圖與範例,幫助讀者建立機器學習的基本概念。第一章介紹機器學習的基本概念與類型,幫助讀者快速入門。第二章深入探討監督式學習,涵蓋多種經典演算法,如線性回歸、決策樹與神經網路等。第三章則介紹非監督式學習,重點講解資料探索與聚類方法。第四章專注於模型評估與優化,幫助讀者提升模型性能。最後,第五章通過台股數據分析與YOLO物件辨識兩個實戰專案,讓讀者實際應用所學知識,開啟機器學習與深度學習的探索之旅。 本書特色   1.強調實作與錯誤學習:本書不僅講解理論,還鼓勵讀者動手實踐,以實際應用深化理解。   2.系統化的學習路徑:以示意圖與簡單範例帶領讀者進入機器學習,逐步深入監督式與非監督式學習,最終挑戰更進階的AI應用。   3.提供完整的學習支援:書中還整理了機器學習的專業術語,並附有環境安裝指南,讓更多人能輕鬆入門機器學習。   4.豐富的線上教學資源:作者經營YouTube頻道「工程師の師」,提供多樣化的教學影片,作為書本內容的延伸學習資源。 【目錄】 第一章 機器學習新手上路 1-1 什麼是機器學習 1-2 機器學習的種類 1-3 免費練習開發平台 1-4 機器學習步驟 第二章 監督式學習 2-1 線性回歸 Linear Regression 2-2 支援向量機 Support Vector Machine 2-3 單純貝氏分類器 Naïve Bayes Classifier 2-4 決策樹Decision Tree 2-5 隨機森林 Random Forest 2-6 神經網路 Neural Network 2-7 近鄰演算法 K-Nearest Neighbors 第三章 非監督式學習 3-1 主成分分析 Principal Components Analysis 3-2 非負矩陣 Non-negative Matrix Factorization 3-3 平均分群演算法 K-means 3-4 高斯混合分布 Gaussian Mixture Models 第四章 評估方法與訓練技巧 4-1 分類問題評估 4-2 回歸問題評估 4-3 交叉驗證 Cross-Validation 4-4 批次量 Batch Size 第五章 最終挑戰—實戰應用 5-1 AI 股票理財專家 5-2 YOLOv9 物件辨識 結語 附錄 附錄一 專有名詞解釋 附錄二 環境安裝 附錄三 參考文獻 習題

原價: 500 售價: 440 現省: 60元
立即查看