為您推薦
類似書籍推薦給您
必學!Python資料科學‧機器學習最強套件-NumPy、Pandas、Matplotlib、OpenCV、scikit-learn、tf.Keras ISBN13:9789863126157 出版社:旗標出版社 作者:石川聡彥-著;施威銘研究室-監修 譯者:劉金讓 裝訂/頁數:平裝/448頁 規格:23cm*17cm*2.8cm (高/寬/厚) 重量:982克 版次:1 出版日:2021/04/19 中國圖書分類:電腦程式語言 內容簡介 最夯的 Python 套件解說 ✕ 最夯的資料科學、機器學習技術, 本書帶您一次學會! Python 是近來最熱門的程式語言, 也是資料科學、機器學習實作時的首選語言。Python 之所以在這些領域大放異彩, 就是仰賴了各種功能強大的第三方套件, 不過套件百百款, 該從哪些下手呢?很簡單, 很少用到的先不用花太多時間, 我們挑常用、關鍵的先學好!本書為有志於學習資料科學、機器學習的初學者, 嚴選出 NumPy、Pandas、Matplotlib、OpenCV、scikit-learn、tf.Keras 等最強套件, 絕對是初學者必須好好掌握的! NumPy 數值運算套件可以做資料高速運算, 許多套件也都是以 NumPy 為基礎建構而成, 經常得跟 NumPy 搭配使用, 一定要紮穩這個重要基石; 在面對龐大的資料時, 使用 Pandas、Matplotlib 可以輕鬆做資料整理, 並藉由繪圖獲取重要資訊, 是資料科學實作的強大利器; OpenCV 是電腦視覺 (Computer Vision) 領域響叮噹的套件, 不管是裁切、縮放、輪廓偵測、過濾影像以強化資訊...各種影像處理功能一應俱全, 是影像辨識、機器學習做資料擴增的最強助手; 最後, 我們將帶您一窺 scikit-learn、tf.Keras 這兩個重量級套件如何在機器學習、深度學習領域中發揮關鍵性的作用, 我們會實際操演如何利用它們做資料預處理 (Preprocessing)、建構 KNN / SVM / 邏輯斯迴歸 (Logistic regression) / 決策樹 (Decision tree) / 隨機森林 (Random forest)…等監督式學習分類模型;以及建立 DNN、CNN 等影像辨識神經網路 (Neural network)。 看了本書之後, 你將深刻體會到各套件的強大之處, 利用短短幾行程式碼, 竟然瞬間完成許多運算、建模工作。不過各套件的函式、參數設定可不像網路文章寫的這麼單純, 當中有許多設定「眉角」需要特別注意, 為此, 小編都經過逐一詳測, 針對可能遇到的問題添加大量註解, 幫助讀者更加理解內容! 本書特色 □資料科學熱門套件解說 ‧紮穩 NumPy 重要基礎:axis、dimention、陣列切片、各種高速運算函式 ‧Pandas 資料分析技巧:資料清理、缺失值處理、快速取得各種統計數據 ‧Matplotlib 資料視覺化:繪製 2D / 3D 圖 / 子圖、比較資料的分布狀況 ‧OpenCV 影像處理:影像裁切 / 縮放 / 翻轉...做資料擴增, 二值化 (binarization) / 降雜訊...強化重要影像資訊 □最紮實的機器學習、深度學習實戰 ‧機器學習的資料預處理 (Data preprocessing) ‧快速建構 KNN / SVM / 邏輯斯迴歸 (Logistic regression) / 決策樹 (Decision tree) / 隨機森林 (Random forest)...監督式學習分類模型 ‧建立 DNN、CNN 影像辨識神經網路 (Neural network) ‧建模完只是第一步!各模型超參數 (Hyperparameter) 調整心法大公開! □本書由【施威銘研究室監修】, 書中針對原書進行大量補充, 並適當添加註解, 幫助讀者更加理解內容! 目錄 第 1 章 Python 基礎:變數、 資料型別與 if 判斷式 第 2 章 Python 基礎:list、dict 與迴圈 第 3 章 函式、 類別與模組 第 4 章 進階函式及特殊容器 第 5 章 NumPy 高速運算套件 5-1 NumPy 的基本介紹 5-2 陣列的基本操作 5-2-1 建立陣列 5-2-2 陣列的切片操作 5-2-3 使用布林陣列篩選值 5-2-4 陣列的四則計算 5-2-5 體驗好用的 NumPy 函式 5-3 NumPy 多軸陣列 5-3-1 陣列的軸 (axis) 5-3-2 陣列的 shape 5-3-3 多軸陣列的切片做法 5-3-4 陣列轉置 (transpose) 5-3-5 陣列排序 5-3-6 陣列擴張 (Broadcasting) 5-3-7 用 NumPy 函式計算矩陣乘積 第 6 章 pandas 的基礎 6-1 pandas 簡介 6-2 Series 物件的操作處理 6-2-1 建立 Series 物件 6-2-2 取出 Series 當中的元素 6-2-3 單取出「索引值」或者「內容值」-.index、.values 6-2-4 新增 Series 物件的元素–append() 6-2-5 刪除 Series 物件的元素–drop() 6-2-6 從 Series 物件篩選出想要的元素 6-2-7 將 Series 的元素排序–sort_index()、 sort_values() 6-3 DataFrame 物件的操作處理 6-3-1 建立 DataFrame 物件–pd.DataFrame() 6-3-2 修改 index 和 column 的名稱–.index、.column 6-3-4 加入新的資料列–append() 6-3-4 加入新的欄位 6-3-5 取出 DataFrame 當中的元素–df.loc[]、df.iloc[] 6-3-6 刪除 df 物件的列或行–drop() 6-3-7 將欄位值依大小排序–sort_values() 6-3-8 從 df 物件篩選出想要的資料 第 7 章 DataFrame 的串接與合併 7-1 概念說明 7-2 用 concat() 串接多個 DataFrame 7-3 用 merge() 合併多個 DataFrame 第 8 章 DataFrame 的進階應用 8-1 載入外部檔案並做資料整理 8-2 處理 DataFrame 中的缺失值 8-2-1 用 dropna() 刪除含有 NaN (缺失值) 的列 8-2-2 用 fllna() 填補 NaN 值 8-3 分析數據常用到的技巧 (一) 8-3-1 duplicated()、drop_duplicated() - 尋找或刪除 DataFrame 內重複的資料 8-3-2 map()–利用 DataFrame 的既有欄位生成新的欄位 8-3-3 用 cut() 劃分、篩選資料 8-4 分析數據常用到的技巧 (二) 8-4-1 取頭尾列–head()、tail() ...
類似書籍推薦給您
最踏實AI之路:全白話機器學習一次搞懂 ISBN13:9789865501884 出版社:深智數位 作者:黄佳 裝訂/頁數:平裝/496頁 規格:23cm*17cm*2.5cm (高/寬/厚) 版次:1 出版日:2021/04/19 中國圖書分類:特殊電腦方法 內容簡介 看故事學知識,繁雜的機器學習原來這麼簡單, 從小白新手到黑帶高手,從理論數學到專案實作,在程式碼中看到自己的進步! 機器學習浪潮已達世紀高峰,你還不行動? ▌跳出俗套、耳目一新 ▌ 本書跳脫出俗套,真正從初學者角度為我們呈現了一幅人工智慧的技術畫卷,令人耳目一新。 ▌未來AI、平易近人 ▌ Al 是未來,它將重塑每個行業和領域,對於這種迎面而來的宏大變化,是臨淵羡魚還是退而結網?如果你是後者,這是一本輕鬆打開 Al 世界的入門書,書中反覆強調機器學習是非常平易近人的技術,希望大家用來解決自己工作,甚至是生活中的具體問題。 ▌實戰講解、深入淺出 ▌ 本書的「實戰案例」講解得都很細膩、透徹,期待本書把機器學習技術推入「尋常百姓家」。對於線性回歸、邏輯回歸和神經網路等內容循序漸進、層層深入的理論剖析,作者用靈活的方法詮釋深奧的理論,在內容深度上也拿捏合宜。此外,本書的整合學習和強化學習部分也很精彩,簡明扼要且重點突出,概念介紹特點鮮明。 ▌易讀易懂、脈絡清晰 ▌ 本書深入淺出,切入點與市面上已有的人工智慧和機器學習書迴然不同,十分易讀易懂。全書結構嚴謹、脈絡清晰,讓讀者可以輕鬆進入機器學習的殿堂。 目錄 引子 Al 菜鳥的挑戰--100 天上線智慧預警系統 01 機器學習快速上手路徑—唯有實戰 02 數學和Python 基礎知識—一天搞定 03 線性回歸—預測網店的銷售額 04 邏輯回歸—給病患和鳶尾花分類 05 深度神經網路—找出可能流失的客戶 06 卷積神經網路—辨識狗狗的圖型 07 循環神經網路—鑑定留言及探索系外行星 08 經典演算法「寶刀未老」 09 整合學習「笑傲江湖」 10 監督學習之外—其他類型的機器學習 11 強化學習實戰—咖哥的冰湖挑戰 A 尾聲-- 如何實現機器學習中的知識遷移及持續性的學習 B 練習答案
類似書籍推薦給您
【簡介】 內容涵蓋機器學習三大主題:監督式學習、無監督式學習與強化式學習。 採用生動活潑的範例,以深入淺出、圖文並茂的方式,建立良好的理論基礎。 搭配 Python 程式實作,實現「做中學」的學習理念。 提供豐富的學習資源,包含:數學背景、練習題等,厚植機器學習技術研發能力。 【目錄】 Chapter 1 介 紹 Chapter 2 端到端機器學習 Chapter 3 迴 歸 Chapter 4 貝氏分類器 Chapter 5 k-最近鄰 Chapter 6 支援向量機 Chapter 7 決策樹 Chapter 8 隨機森林 Chapter 9 提升方法 Chapter 10 類神經網路 Chapter 11 k-Means分群 Chapter 12 DBSCAN Chapter 13 高斯混合模型 Chapter 14 主成分分析 Chapter 15 t-SNE Chapter 16 強化式學習 附錄 數學背景 習題參考解答 參考文獻
類似書籍推薦給您
【簡介】 *全面掌握雲端資料與AI平台設計關鍵 *實戰導向,靈活運用AWS、Azure、Google Cloud、Snowflake、Databricks *從基礎到進階,打造符合企業需求的現代化資料平台 *強化資料治理,加速AI/ML創新,驅動決策智慧 無論你是資料架構師、工程師,或是希望運用AI強化決策的企業領導者,本書都將成為你打造未來資料與機器學習平台的最佳指南! 在資料驅動的時代,企業該如何善用資料創造價值? 本書由三位資深工程師聯手打造,為雲端架構師與資料專業人士提供了一套清晰完整的解決方案。從雲端資料平台的設計到AI與機器學習的整合,帶您走過資料現代化的每一步。無論是整合分散的資料、實現即時決策,還是利用AI解鎖創新潛力,本書都提供了實用的架構與工具,幫助你在雲端時代保持優勢。 「本書完整介紹,如何依據企業組織的策略方向,設計與建置現代雲端資料與ML平台的概念、模式與元件。真希望我能在多年前就能讀到這本書。」 —Robert Sahlin,Mathem資料平台主管 所有的雲端架構師都必須知道如何建置資料平台,以賦與企業能夠快速高效地做出資料驅動的決策,並在整個企業範圍內提供智能化服務。本書將展示如何使用AWS、Azure、Google Cloud以及Snowflake與Databricks這類多重雲端工具,設計、建置與現代化雲端原生資料與機器學習平台。 作者Marco Tranquillin、Valliappa Lakshmanan與Firat Tekiner使用真實世界企業架構來說明,內容涵蓋從雲端匯入到啟動整個資料生命週期。你將學到如何轉換、保全與現代化資料倉儲與資料湖這些熟悉的解決方案,也將能充份利用最新的AI/ML模式取得精準且快速的洞見,提升競爭優勢。 你將學會: *設計現代化且安全的雲端原生或混合資料分析與機器學習平台 *透過將企業資料整合到治理良好、可擴充的與彈性的資料平台,加速資料導向的創新。 *民主化存取企業資料,治理業務團隊提取洞見方式與建置AI/ML的能力。 *讓您的企業利用串流管道即時決策 *建置MLOps平台,移往預測性與指示性分析 【目錄】 第一章 資料平台現代化:簡介 第二章 資料創新的策略性作法 第三章 設計資料團隊 第四章 遷移框架 第五章 架構資料湖 第六章 企業資料倉儲的創新 第七章 湖倉融合 第八章 串流架構 第九章 混合與邊緣擴展資料平台 第十章 AI應用架構 第十一章 架構ML平台 第十二章 資料平台現代化:模型案例