書名: Intelligent Tutoring Systems 2008 <SV>978-3-540-69130-3
作者: B P.Woolf
ISBN: 9783540691303
出版社: Springer
定價: 4352
售價: 4352
庫存: 已售完
LINE US!
此書為本公司代理,目前已售完,有需要可以向line客服詢問進口動向

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

為您推薦

Intelligent Tutoring Systems 2006 <SV> 3-540-35159-0

Intelligent Tutoring Systems 2006 <SV> 3-540-35159-0

類似書籍推薦給您

原價: 3560 售價: 3560 現省: 0元
立即查看
INTELLIGENT TUTORING SYSTEMS 2004<SV>3-540-22948-5

INTELLIGENT TUTORING SYSTEMS 2004<SV>3-540-22948-5

類似書籍推薦給您

原價: 3819 售價: 3819 現省: 0元
立即查看
INTELLIGENT TUTORING SYSTEMS 2002 <SV> 3-540-43750-9

INTELLIGENT TUTORING SYSTEMS 2002 <SV> 3-540-43750-9

類似書籍推薦給您

原價: 3290 售價: 3290 現省: 0元
立即查看
Artificial Intelligence: A Guide to Intelligent Systems (4版)

Artificial Intelligence: A Guide to Intelligent Systems (4版)

類似書籍推薦給您

【簡介】 What are the principles behind intelligent systems? How are they built? What are intelligent systems useful for? How do we choose the right tool for the job? These questions are answered by Michael Negnevitsky’s Artificial Intelligence: A Guide to Intelligent Systems. Unlike many books on computer intelligence, which use complex computer science terminology and are crowded with complex matrix algebra and differential equations, this text demonstrates that the ideas behind intelligent systems are simple and straightforward. This text assumes little or no programming experience as it tackles topics like expert systems, fuzzy systems, artificial neural networks, evolutionary computation, knowledge engineering, and data mining. 【目錄】 Introduction to Intelligent Systems 1.1 Intelligent Machines, or What Machines Can Do 1.2 The History of Artificial Intelligence, or From the ‘Dark Ages’ to Knowledge-based Systems 1.3 Generative AI 1.4 Summary Questions for Review References Expert Systems 2.1 Introduction, or Knowledge Representation Using Rules 2.2 The Main Players in the Expert System Development Team 2.3 Structure of a Rule-based Expert System 2.4 Fundamental characteristics of an expert system 2.5 Forward Chaining and Backward Chaining Inference Techniques 2.6 MEDIA ADVISOR: A Demonstration Rule-based Expert System 2.7 Conflict Resolution 2.8 Uncertainty Management in Rule-based Expert Systems 2.9 Advantages and Disadvantages of Rule-based Expert systems 2.10 Summary Questions for Review References Fuzzy Systems 3.1 Introduction, or What Is Fuzzy Thinking? 3.2 Fuzzy Sets 3.3 Linguistic Variables and Hedges 3.4 Operations of Fuzzy Sets 3.6 Fuzzy Inference 3.7 Building a Fuzzy Expert System 3.8 Summary Questions for Review References Frame-based Systems and Semantic Networks 4.1 Introduction, or What Is a Frame? 4.2 Frames as a Knowledge Representation Technique 4.3 Inheritance in Frame-based Systems 4.4 Methods and Demons 4.5 Interaction of Frames and Rules 4.6 Buy Smart: A Frame-based Expert System 4.7 The Web of Data 4.8 RDF – Resource Description Framework and RDF Triples 4.9 Turtle, RDF Schema and OWL 4.10 Querying the Semantic Web with SPARQL 4.11 Summary Questions for Review References Artificial Neural Networks 5.1 Introduction, or How the Brain Works 5.2 The Neuron as a Simple Computing Element 5.3 The Perceptron 5.4 Multilayer Neural Networks 5.5 Accelerated Learning in Multilayer Neural Networks 5.6 The Hopfield Network 5.7 Bidirectional Associative Memory 5.8 Self-organising Neural Networks 5.9 Reinforcement Learning 5.10 Summary Questions for Review References Deep Learning and Convolutional Neural Networks 6.1 Introduction, or How “Deep” Is a Deep Neural Network? 6.2 Image Recognition or How Machines See the World 6.3 Convolution in Machine Learning 6.4 Activation Functions in Deep Neural Networks 6.5 Convolutional Neural Networks 6.6 Back-propagation Learning in Convolutional Networks 6.7 Batch Normalisation 6.8 Summary Questions for Review References Evolutionary Computation 7.1 Introduction, or Can Evolution Be Intelligent? 7.2 Simulation of Natural Evolution 7.3 Genetic Algorithms 7.4 Why Genetic Algorithms Work 7.5 Maintenance Scheduling with Genetic Algorithms 7.6 Genetic Programming 7.7 Evolution Strategies 7.8 Ant Colony Optimisation 7.9 Particle Swarm Optimisation 7.10 Summary Questions for Review References Hybrid Intelligent Systems 8.1 Introduction, or How to Combine German Mechanics with Italian Love 8.2 Neural Expert Systems 8.3 Neuro-Fuzzy Systems 8.4 ANFIS: Adaptive Neuro-Fuzzy Inference System 8.5 Evolutionary Neural Networks 8.6 Fuzzy Evolutionary Systems 8.7 Summary Questions for Review References Knowledge Engineering 9.1 Introduction, or What Is Knowledge Engineering? 9.2 Will an Expert System Work for My Problem? 9.3 Will a Fuzzy Expert System Work for My Problem? 9.4 Will a Neural Network Work for My Problem? 9.5 Will a Deep Neural Network Work for My Problem? 9.6 Will Genetic Algorithms Work for My Problem? 9.7 Will Particle Swarm Optimisation Work for My Problem? 9.8 Will a Hybrid Intelligent System Work for My Problem? 9.9 Summary Questions for Review References Data Mining and Knowledge Discovery 10.1 Introduction, or What Is Data Mining? 10.2 Statistical Methods and Data Visualisation 10.3 Principal Components Analysis 10.4 Relational Databases and Database Queries 10.5 The Data Warehouse and Multidimensional Data Analysis 10.6 Decision Trees 10.7 Association Rules and Market Basket Analysis 10.8 Summary Questions for Review References Glossary Index

原價: 1680 售價: 1596 現省: 84元
立即查看
INTELLIGENT ANALYSIS OF FUNDUS IMAGES

INTELLIGENT ANALYSIS OF FUNDUS IMAGES

類似書籍推薦給您

"This comprehensive compendium designs deep neural network models and systems for intelligent analysis of fundus imaging. In response to several blinding fundus diseases such as Retinopathy of Prematurity (ROP), Diabetic Retinopathy (DR) and Macular Edema (ME), different image acquisition devices and fundus image analysis tasks are elaborated. From the actual fundus disease analysis tasks, various deep neural network models and experimental results are constructed and analyzed. For each task, an actual system for clinical application is developed. This useful reference text provides theoretical and experimental reference basis for AI researchers, system engineers of intelligent medicine and ophthalmologists. Sample Chapter(s) Preface Chapter 1: Introduction Contents: Introduction Automated Analysis for Retinopathy of Prematurity by Deep Neural Networks DeepROP: An Automated ROP Screening System Diagnosis of Diabetic Retinopathy Using Deep Neural Networks Automated Identification and Grading System of Diabetic Retinopathy Using Deep Neural Networks Automated Segmentation of Macular Edema in OCT Using Deep Neural Networks DeepUWF: An Automated Ultrawide-field Fundus Screening System via Deep Learning DeepUWF-Plus: Automatic Fundus Identification and Diagnosis System Based on Ultrawide-field Fundus Imaging Readership: Researchers, professionals, academics and graduate students in neural networks and machine learning."

原價: 2834 售價: 2692 現省: 142元
立即查看