書名: Micahael Freeman的私家攝技絕活101
作者: FREEMAN
ISBN: 9789574426775
出版社: 旗標
定價: 550
售價: 495
庫存: 已售完
LINE US! 詢問這本書 團購優惠、書籍資訊 等
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

為您推薦

CURRENT Diagnosis & Treatment Psychiatry (4版)

CURRENT Diagnosis & Treatment Psychiatry (4版)

類似書籍推薦給您

【簡介】 重量:1.45KG 頁數:892 裝訂:平裝 開數:23 x 18.7 cm 印刷:雙色 Quickly and accurately diagnose and treat the psychiatric disorders you will encounter in clinical practice CURRENTDiagnosis and Treatment: Psychiatryoffers instant access to relevant etiology, phenomenology, pathophysiology, and drug information. Designed in the time-saving outline style that makes LANGE®CURRENT titles so popular, the book covers need-to-know information on interviewing techniques, emergency psychiatry, treatment strategies, psychiatry and the law, psychological testing, emergency psychiatry, and evaluating infants. This authoritative resource reviews essential psychopharmacologic and psychotherapeutic approaches, and provides evaluation, testing, and decision-making tools and criteria. Renowned authorities on the subject, the editors have a cumulative 100+ years treating patients and teaching residents. • Covers both adult and pediatric disorders • Reviews essential psychopharmacologic and psychotherapeutic approaches • Provides evaluation, testing, and decision-making tools and criteria

原價: 2900 售價: 2900 現省: 0元
立即查看
Artificial Intelligence: A Guide to Intelligent Systems (4版)

Artificial Intelligence: A Guide to Intelligent Systems (4版)

類似書籍推薦給您

【簡介】 What are the principles behind intelligent systems? How are they built? What are intelligent systems useful for? How do we choose the right tool for the job? These questions are answered by Michael Negnevitsky’s Artificial Intelligence: A Guide to Intelligent Systems. Unlike many books on computer intelligence, which use complex computer science terminology and are crowded with complex matrix algebra and differential equations, this text demonstrates that the ideas behind intelligent systems are simple and straightforward. This text assumes little or no programming experience as it tackles topics like expert systems, fuzzy systems, artificial neural networks, evolutionary computation, knowledge engineering, and data mining. 【目錄】 Introduction to Intelligent Systems 1.1 Intelligent Machines, or What Machines Can Do 1.2 The History of Artificial Intelligence, or From the ‘Dark Ages’ to Knowledge-based Systems 1.3 Generative AI 1.4 Summary Questions for Review References Expert Systems 2.1 Introduction, or Knowledge Representation Using Rules 2.2 The Main Players in the Expert System Development Team 2.3 Structure of a Rule-based Expert System 2.4 Fundamental characteristics of an expert system 2.5 Forward Chaining and Backward Chaining Inference Techniques 2.6 MEDIA ADVISOR: A Demonstration Rule-based Expert System 2.7 Conflict Resolution 2.8 Uncertainty Management in Rule-based Expert Systems 2.9 Advantages and Disadvantages of Rule-based Expert systems 2.10 Summary Questions for Review References Fuzzy Systems 3.1 Introduction, or What Is Fuzzy Thinking? 3.2 Fuzzy Sets 3.3 Linguistic Variables and Hedges 3.4 Operations of Fuzzy Sets 3.6 Fuzzy Inference 3.7 Building a Fuzzy Expert System 3.8 Summary Questions for Review References Frame-based Systems and Semantic Networks 4.1 Introduction, or What Is a Frame? 4.2 Frames as a Knowledge Representation Technique 4.3 Inheritance in Frame-based Systems 4.4 Methods and Demons 4.5 Interaction of Frames and Rules 4.6 Buy Smart: A Frame-based Expert System 4.7 The Web of Data 4.8 RDF – Resource Description Framework and RDF Triples 4.9 Turtle, RDF Schema and OWL 4.10 Querying the Semantic Web with SPARQL 4.11 Summary Questions for Review References Artificial Neural Networks 5.1 Introduction, or How the Brain Works 5.2 The Neuron as a Simple Computing Element 5.3 The Perceptron 5.4 Multilayer Neural Networks 5.5 Accelerated Learning in Multilayer Neural Networks 5.6 The Hopfield Network 5.7 Bidirectional Associative Memory 5.8 Self-organising Neural Networks 5.9 Reinforcement Learning 5.10 Summary Questions for Review References Deep Learning and Convolutional Neural Networks 6.1 Introduction, or How “Deep” Is a Deep Neural Network? 6.2 Image Recognition or How Machines See the World 6.3 Convolution in Machine Learning 6.4 Activation Functions in Deep Neural Networks 6.5 Convolutional Neural Networks 6.6 Back-propagation Learning in Convolutional Networks 6.7 Batch Normalisation 6.8 Summary Questions for Review References Evolutionary Computation 7.1 Introduction, or Can Evolution Be Intelligent? 7.2 Simulation of Natural Evolution 7.3 Genetic Algorithms 7.4 Why Genetic Algorithms Work 7.5 Maintenance Scheduling with Genetic Algorithms 7.6 Genetic Programming 7.7 Evolution Strategies 7.8 Ant Colony Optimisation 7.9 Particle Swarm Optimisation 7.10 Summary Questions for Review References Hybrid Intelligent Systems 8.1 Introduction, or How to Combine German Mechanics with Italian Love 8.2 Neural Expert Systems 8.3 Neuro-Fuzzy Systems 8.4 ANFIS: Adaptive Neuro-Fuzzy Inference System 8.5 Evolutionary Neural Networks 8.6 Fuzzy Evolutionary Systems 8.7 Summary Questions for Review References Knowledge Engineering 9.1 Introduction, or What Is Knowledge Engineering? 9.2 Will an Expert System Work for My Problem? 9.3 Will a Fuzzy Expert System Work for My Problem? 9.4 Will a Neural Network Work for My Problem? 9.5 Will a Deep Neural Network Work for My Problem? 9.6 Will Genetic Algorithms Work for My Problem? 9.7 Will Particle Swarm Optimisation Work for My Problem? 9.8 Will a Hybrid Intelligent System Work for My Problem? 9.9 Summary Questions for Review References Data Mining and Knowledge Discovery 10.1 Introduction, or What Is Data Mining? 10.2 Statistical Methods and Data Visualisation 10.3 Principal Components Analysis 10.4 Relational Databases and Database Queries 10.5 The Data Warehouse and Multidimensional Data Analysis 10.6 Decision Trees 10.7 Association Rules and Market Basket Analysis 10.8 Summary Questions for Review References Glossary Index

原價: 1680 售價: 1596 現省: 84元
立即查看
多極世界衝擊:終結全球化,改變世界金融與權力中心的新變局 (1版)

多極世界衝擊:終結全球化,改變世界金融與權力中心的新變局 (1版)

類似書籍推薦給您

【簡介】 亂世,也是多極角力! 臺灣必須正視自己在多極體系中的位置,思考21世紀的生存之道。 瑞士信貸投資長麥可‧歐蘇利文對世界經濟、金融與權力移轉的精闢分析! 在後全球化時代的多極平衡態勢中,提供小國因應策略。 經濟民主連合經濟組召集人╱英國倫敦大學亞非學院經濟學博士 吳啟禎 專文導讀 全球化時代留下的爛攤子該如何收拾? 英美主導的跨國資本霸權將於2024年崩盤? 面對動盪的世界,歐蘇利文為我們指出未來的方向! 全球化告終,普世價值破滅,更趨平等的多極世界即將來臨! 未來,我們將面對更多現實考驗,地球公民將更渴望自由。 過去這幾年,政治、經濟、金融和地緣政治受到一連串衝擊:經濟上成長率和生產力都降低,義大利、美國和英國甚至創下數世紀以來債務紀錄;政治上則有英國脫歐、川普當選美國總統、歐洲出現許多右翼政黨;金融上股市處於泡沫狀態,而比政府更有力的中央銀行為避免全球金融危機而購入大量資產,但他們很快就要拋售這些資產而造成經濟上的動盪;地緣政治上,國家勢力興衰正以加速度變化著,馬克宏當選總統使法國成為歐洲充滿想法與活力的領導者,同時美國不再是令人懼怕的強國,敘利亞開始使用化學武器、北韓朝日本發射導彈、俄羅斯吞併克里米亞,以及中國的再度崛起…… 麥可‧歐蘇利文認為,許多人忽略了這些新趨勢的深刻意義,他認為這個世界正進入一個轉型階段,過去全球化所帶來的一致性現象將轉變為多元化發展,新的政治型態與政黨將興起,我們將進入一個「平衡」的階段,英國脫歐和川普當選只是這個「平衡」階段的熱鬧開場。《多極世界衝擊》將結合經濟學、政治學、金融學與地緣政治學的角度,來探討正在形成的多極平衡狀態,這些發展將導致國際典範的轉移。 未來十年左右的趨勢之一,將是地區和國家如何演變,以及這些變化如何推動各國內部的政治變革。歐蘇利文相信,世界將從動盪中逐漸平緩,迎向一個「多極世界」,至於究竟是美國、歐洲、中國三分天下,抑或印度將躋身強極之一,有賴未來發展動向,然而,全球普世價值將不再存在於這新興的「多極世界」。 【目錄】 導讀 後全球化時代的多極平衡態勢與小國因應策略╱吳啟禎 一、平衡 英國脫歐、川普、喧鬧與分裂 二、潮流漸退 經濟方面喘不過氣,政治方面沒了耐性 三、下一步該怎麼走? 似曾相識,重來一次 四、平衡派 人民協定 五、他們做得到嗎? 平等、問責性、責任感 六、當大國還是當強國? 奇德利部長的決斷 七、金融界的西發里亞合約 學著獨立,別再靠央行給的安全感活下去 八、多極世界 全球國內生產總值向東移 九、全新的世界秩序 平衡派或利維坦派? 十、漢彌爾頓計畫 漢彌爾頓會怎麼做? 十一、展望未來 從喧鬧到分裂……未來將會如何? 謝辭 參考書目 注釋

原價: 450 售價: 405 現省: 45元
立即查看
American Grammar Goals (2) Student's Book with eBook and Student's Resource Center Pack

American Grammar Goals (2) Student's Book with eBook and Student's Resource Center Pack

類似書籍推薦給您

原價: 480 售價: 451 現省: 29元
立即查看
Statistics at Square One (12版)

Statistics at Square One (12版)

類似書籍推薦給您

原價: 750 售價: 750 現省: 0元
立即查看