定價: | ||||
售價: | 1950元 | |||
庫存: | 已售完 | |||
LINE US! | ||||
此書為本公司代理,目前已售完,有需要可以向line客服詢問進口動向 | ||||
付款方式: | 超商取貨付款 |
![]() |
|
信用卡 |
![]() |
||
線上轉帳 |
![]() |
||
物流方式: | 超商取貨 | ||
宅配 | |||
門市自取 |
為您推薦
類似書籍推薦給您
【簡介】 The leading structural concrete design reference for over two decades—updated to reflect the latest ACI 318-19 code A go-to resource for structural engineering students and professionals for over twenty years, this newly updated text on concrete structural design and analysis reflects the most recent ACI 318-19 code. It emphasizes student comprehension by presenting design methods alongside relevant codes and standards. It also offers numerous examples (presented using SI units and US-SI conversion factors) and practice problems to guide students through the analysis and design of each type of structural member. New to Structural Concrete: Theory and Design, Seventh Edition are code provisions for transverse reinforcement and shear in wide beams, hanger reinforcement, and bi-directional interaction of one-way shear. This edition also includes the latest information on two-way shear strength, ordinary walls, seismic loads, reinforcement detailing and analysis, and materials requirements. This book covers the historical background of structural concrete; advantages and disadvantages; codes and practice; and design philosophy and concepts. It then launches into a discussion of the properties of reinforced concrete, and continues with chapters on flexural analysis and design; deflection and control of cracking; development length of reinforcing bars; designing with the strut-and-tie method; one-way slabs; axially loaded columns; and more. Updated to align with the new ACI 318-19 code with new code provisions to include: transverse reinforcement and shear in wide beams, hanger reinforcement, bi-directional interaction of one-way shear, and reference to ACI certifications Includes dozens of worked examples that explain the analysis and design of structural members Offers updated information on two-way shear strength, seismic loads, materials requirements, and more Improves the design ability of students by explaining code requirements and restrictions Provides examples in SI units in every chapter as well as conversion factors from customary units to SI Offers instructors access to a solutions manual via the book's companion website Structural Concrete: Theory and Design, Seventh Edition is an excellent text for undergraduate and graduate students in civil and structural engineering programs. It will also benefit concrete designers, structural engineers, and civil engineers focused on structures. 【目錄】 Preface xiii Notation xvii Conversion Factors xxiii 1 Introduction 1 1.1 Structural Concrete 1 1.2 Historical Background 1 1.3 Advantages and Disadvantages of Reinforced Concrete 3 1.4 Codes of Practice 3 1.5 Design Philosophy and Concepts 3 1.6 Units of Measurement 4 1.7 Loads 5 1.8 Safety Provisions 6 1.9 Structural Concrete Elements 7 1.10 Structural Concrete Design 8 1.11 Accuracy of Calculations 8 1.12 Concrete High-Rise Buildings 8 References 11 2 Properties of Reinforced Concrete 12 2.1 Factors Affecting Strength of Concrete 12 2.2 Compressive Strength 14 2.3 Stress–Strain Curves of Concrete 14 2.4 Tensile Strength of Concrete 16 2.5 Flexural Strength (Modulus of Rupture) of Concrete 17 2.6 Shear Strength 17 2.7 Modulus of Elasticity of Concrete 18 2.8 Poisson’s Ratio 19 2.9 Shear Modulus 20 2.10 Modular Ratio 20 2.11 Volume Changes of Concrete 20 2.12 Creep 21 2.13 Models for Predicting Shrinkage and Creep of Concrete 22 2.14 Unit Weight of Concrete 57 2.15 Fire Resistance 57 2.16 High-Performance Concrete 58 2.17 Lightweight Concrete 58 2.18 Fibrous Concrete 59 2.19 Steel Reinforcement 59 Summary 64 References 65 Problems 66 3 Flexural Analysis of Reinforced Concrete Beams 69 3.1 Introduction 69 3.2 Assumptions 69 3.3 Behavior of Simply Supported Reinforced Concrete Beam Loaded to Failure 70 3.4 Types of Flexural Failure and Strain Limits 73 3.5 Load Factors 76 3.6 Strength Reduction Factor 𝜙 77 3.7 Significance of Analysis and Design Expressions 79 3.8 Equivalent Compressive Stress Distribution 79 3.9 Singly Reinforced Rectangular Section in Bending 82 3.10 Lower Limit or Minimum Percentage of Steel 89 3.11 Adequacy of Sections 90 3.12 Bundled Bars 93 3.13 Sections in the Transition Region (𝜙 < 0.9) 94 3.14 Rectangular Sections with Compression Reinforcement 96 3.15 Analysis of T- and I-Sections 105 3.16 Dimensions of Isolated T-Shaped Sections 112 3.17 Inverted L-Shaped Sections 113 3.18 Sections of Other Shapes 114 3.19 Analysis of Sections Using Tables 115 3.20 Additional Examples 116 3.21 Examples Using SI Units 117 Summary 119 References 122 Problems 122 4 Flexural Design of Reinforced Concrete Beams 125 4.1 Introduction 125 4.2 Rectangular Sections with Tension Reinforcement Only 125 4.3 Spacing of Reinforcement and Concrete Cover 127 4.4 Rectangular Sections with Compression Reinforcement 133 4.5 Design of T-Sections 138 4.6 Additional Examples 142 4.7 Examples Using SI Units 147 Summary 148 Problems 151 5 Shear and Diagonal Tension 155 5.1 Introduction 155 5.2 Shear Stresses in Concrete Beams 155 5.3 Behavior of Beams without Shear Reinforcement 158 5.4 Beam Shear Strength 160 5.5 Beams with Shear Reinforcement 161 5.6 ACI Code Shear Design Requirements 163 5.7 Design of Vertical Stirrups 168 5.8 Design Summary 169 5.9 Shear Force Due to Live Loads 174 5.10 Shear Stresses in Members of Variable Depth 178 5.11 Examples Using SI Units 183 Summary 186 References 187 Problems 187 6 Deflection and Control of Cracking 190 6.1 Deflection of Structural Concrete Members 190 6.2 Instantaneous Deflection 191 6.3 Long-Time Deflection 196 6.4 Allowable Deflection 197 6.5 Deflection Due to Combinations of Loads 197 6.6 Cracks in Flexural Members 206 6.7 ACI Code Requirements 209 Summary 213 References 214 Problems 215 7 Development Length of Reinforcing Bars 218 7.1 Introduction 218 7.2 Development of Bond Stresses 219 7.3 Development Length in Tension 222 7.4 Summary for Computation of Id in Tension 225 7.5 Development Length in Compression 227 7.6 Critical Sections in Flexural Members 228 7.7 Standard Hooks (ACI Code, Sections 25.4.3) 232 7.8 Splices of Reinforcement 235 7.9 Moment–Resistance Diagram (Bar Cutoff Points) 239 Summary 243 References 244 Problems 245 8 Design of Deep Beams by the Strut-and-Tie Method 248 8.1 Introduction 248 8.2 B- and D-Regions 248 8.3 Strut-and-Tie Model 248 8.4 ACI Design Procedure to Build a Strut-and-Tie Model 251 8.5 Strut-and-Tie Method According to AASHTO LRFD 259 8.6 Deep Members 260 References 277 Problems 277 9 One-Way Slabs 279 9.1 Types of Slabs 279 9.2 Design of One-Way Solid Slabs 281 9.3 Design Limitations According to ACI Code 283 9.4 Temperature and Shrinkage Reinforcement 283 9.5 Reinforcement Details 284 9.6 Distribution of Loads from One-Way Slabs to Supporting Beams 284 9.7 One-Way Joist Floor System 289 Summary 292 References 293 Problems 293 10 Axially Loaded Columns 295 10.1 Introduction 295 10.2 Types of Columns 295 10.3 Behavior of Axially Loaded Columns 296 10.4 ACI Code Limitations 297 10.5 Spiral Reinforcement 299 10.6 Design Equations 300 10.7 Axial Tension 301 10.8 Long Columns 301 Summary 304 References 304 Problems 305 11 Members in Compression and Bending 306 11.1 Introduction 306 11.2 Design Assumptions for Columns 308 11.3 Load–Moment Interaction Diagram 308 11.4 Safety Provisions 310 11.5 Balanced Condition: Rectangular Sections 311 11.6 Column Sections under Eccentric Loading 314 11.7 Strength of Columns for Tension Failure 315 11.8 Strength of Columns for Compression Failure 317 11.9 Interaction Diagram Example 322 11.10 Rectangular Columns with Side Bars 324 11.11 Load Capacity of Circular Columns 327 11.12 Analysis and Design of Columns Using Charts 331 11.13 Design of Columns under Eccentric Loading 336 11.14 Biaxial Bending 341 11.15 Circular Columns with Uniform Reinforcement under Biaxial Bending 343 11.16 Square and Rectangular Columns under Biaxial Bending 345 11.17 Parme Load Contour Method 346 11.18 Equation of Failure Surface 350 11.19 SI Example 352 Summary 354 References 355 Problems 356 12 Slender Columns 360 12.1 Introduction 360 12.2 Effective Column Length (Klu) 361 12.3 Effective Length Factor (K) 363 12.4 Member Stiffness (EI) 365 12.5 Limitation of the Slenderness Ratio (Klu∕r) 366 12.6 Moment-Magnifier Design Method 367 Summary 377 References 378 Problems 379 13 Footings 381 13.1 Introduction 381 13.2 Types of Footings 383 13.3 Distribution of Soil Pressure 384 13.4 Design Considerations 386 13.5 Plain Concrete Footings 395 13.6 Combined Footings 407 13.7 Footings under Eccentric Column Loads 413 13.8 Footings under Biaxial Moment 414 13.9 Slabs on Ground 417 13.10 Footings on Piles 418 13.11 SI Equations 418 Summary 418 References 420 Problems 421 14 Retaining Walls 423 14.1 Introduction 423 14.2 Types of Retaining Walls 423 14.3 Forces on Retaining Walls 424 14.4 Active and Passive Soil Pressures 425 14.5 Effect of Surcharge 429 14.6 Friction on the Retaining Wall Base 430 14.7 Stability Against Overturning 431 14.8 Proportions of Retaining Walls 432 14.9 Design Requirements 433 14.10 Drainage 433 14.11 Basement Walls 444 Summary 447 References 448 Problems 448 15 Design for Torsion 452 15.1 Introduction 452 15.2 Torsional Moments in Beams 453 15.3 Torsional Stresses 454 15.4 Torsional Moment in Rectangular Sections 455 15.5 Combined Shear and Torsion 458 15.6 Torsion Theories for Concrete Members 458 15.7 Torsional Strength of Plain Concrete Members 462 15.8 Torsion in Reinforced Concrete Members (ACI Code Procedure) 462 15.9 Summary of ACI Code Procedures 469 Summary 476 References 477 Problems 477 16 Continuous Beams and Frames 480 16.1 Introduction 480 16.2 Maximum Moments in Continuous Beams 480 16.3 Building Frames 485 16.4 Portal Frames 486 16.5 General Frames 488 16.6 Design of Frame Hinges 490 16.7 Introduction to Limit Design 500 16.8 The Collapse Mechanism 502 16.9 Principles of Limit Design 502 16.10 Upper and Lower Bounds of Load Factors 503 16.11 Limit Analysis 504 16.12 Rotation of Plastic Hinges 507 16.13 Summary of Limit Design Procedure 513 16.14 Moment Redistribution of Maximum Negative or Positive Moments in Continuous Beams 516 Summary 523 References 524 Problems 525 17 Design of Two-Way Slabs 527 17.1 Introduction 527 17.2 Types of Two-Way Slabs 527 17.3 Economical Choice of Concrete Floor Systems 529 17.4 Design Concepts 532 17.5 Column and Middle Strips 535 17.6 Minimum Slab Thickness to Control Deflection 536 17.7 Shear Strength of Slabs 540 17.8 Analysis of Two-Way Slabs by the Direct Design Method 544 17.9 Design Moments in Columns 569 17.10 Transfer of Unbalanced Moments to Columns 570 17.11 Waffle Slabs 581 17.12 Equivalent Frame Method 589 Summary 598 References 598 Problems 599 18 Stairs 601 18.1 Introduction 601 18.2 Types of Stairs 601 18.3 Examples 617 Summary 625 References 625 Problems 625 19 Introduction to Prestressed Concrete 627 19.1 Prestressed Concrete 627 19.2 Materials and Serviceability Requirements 637 19.3 Loss of Prestress 639 19.4 Analysis of Flexural Members 645 19.5 Design of Flexural Members 654 19.6 Cracking Moment 659 19.7 Deflection 661 19.8 Design for Shear 664 19.9 Preliminary Design of Prestressed Concrete Flexural Members 670 19.10 End-Block Stresses 672 Summary 674 References 675 Problems 676 20 Seismic Design of Reinforced Concrete Structures 679 20.1 Introduction 679 20.2 Seismic Design Category 679 20.3 Analysis Procedures 695 20.4 Load Combinations 708 20.5 Special Requirements in Design of Structures Subjected to Earthquake Loads 709 References 740 Problems 740 21 Beams Curved in Plan 742 21.1 Introduction 742 21.2 Uniformly Loaded Circular Beams 742 21.3 Semicircular Beam Fixed at End Supports 749 21.4 Fixed-End Semicircular Beam under Uniform Loading 753 21.5 Circular Beam Subjected to Uniform Loading 755 21.6 Circular Beam Subjected to a Concentrated Load at Midspan 758 21.7 V-Shape Beams Subjected to Uniform Loading 761 21.8 V-Shape Beams Subjected to a Concentrated Load at the Centerline of the Beam 763 Summary 768 References 768 Problems 768 22 Prestressed Concrete Bridge Design Based on AASHTO LRFD Bridge Design Specifications 769 22.1 Introduction 769 22.2 Typical Cross Sections 769 22.3 Design Philosophy of AASHTO Specificatioins 773 22.4 Load Factors and Combinations (AASHTO 3.4) 773 22.5 Gravity Loads 776 22.6 Design for Flexural and Axial Force Effects (AASHTO 5.6) 784 22.7 Design for Shear (AASHTO 5.8) 785 22.8 Loss of Prestress (AASHTO 5.9.3) 791 22.9 Deflections (AASHTO 5.6.3.5.2) 792 References 816 23 Review Problems on Concrete Building Components 817 24 Design and Analysis Flowcharts 840 Appendix A: Design Tables (U.S. Customary Units) 864 Appendix B: Design Tables (SI Units) 874 Appendix C: Structural Aids 882 Index 903
類似書籍推薦給您
高強度鋼筋混凝土結構設計手冊(第二版) ISBN13:9789576555688 出版社:科技圖書 作者:中華民國結構工程學會;中華民國地震工程學會;國家地震工程研究中心-編 裝訂/頁數:平裝/120頁 規格:26cm*19cm*0.9cm (高/寬/厚) 版次:2 出版日:2022/12/17 中文圖書分類:房屋建築學 內容簡介 本「高強度鋼筋混凝土結構設計手冊」主要適用於建築工程,是針對設計強度超越台灣現行混凝土結構設計規範適用範圍之材料提供設計指引,鋼筋與混凝土設計上限分別為690 (790)與100 MPa。本第二版設計手冊主要以國內第一版手冊與2023年版「混凝土結構設計規範」為基礎,更進一步檢討其高強度材料應用於耐震設計的適用性,主要聚焦在高強度混凝土與鋼筋之材料規格、特性與限制,提出梁及柱構件、梁柱接頭、剪力牆、與連接梁的耐震設計適用建議,且檢視鋼筋的握裹、錨定(彎鉤與擴頭)伸展與續接的耐震細部設計建議,最後摘要列表兩版手冊與現行規範規定的差異,以方便讀者參考與比較。若適用,工程界可使用本手冊作為申請「建築新技術新工法新設備及新材料認可」的送審參考文件;另視其適用性,讀者亦可應用本手冊之設計建議於其他工程,如橋樑工程等。 本書特色 第二版「高強度鋼筋混凝土結構設計手冊」,係針對設計強度超越現行混凝土結構設計規範適用範圍之材料提供設計指引,鋼筋與混凝土材料強度應用上限分別為790與100 MPa。 目錄 序(中華民國結構工程學會理事長 邱建國博士) 序(中華民國地震工程學會理事長、國家地震工程研究中心主任 周中哲博士) 序(台灣新型高強度鋼筋混凝土結構研究團隊 林克強博士) 摘要 符號與名詞定義 目錄 表目錄 圖目錄 前言 簡介 設計手冊應用範圍與制定 第一章 總則 1.1 依據 1.2 新材料新工法認可 1.3 引用標準 第二章 材料性質 2.1 混凝土 2.1.1 組成材料 2.1.2 材料之準備與貯存 2.1.3 配比與試拌 2.1.4 品質控制 2.1.5 彈性模數 2.1.6 特殊用途規定 2.2 鋼筋 2.2.1 鋼筋規格 2.2.2 鋼筋機械式續接與端部錨定配件 2.3 混凝土與鋼筋材料設計強度比 第三章 梁相關規定 3.1 適用範圍 3.2 撓曲強度 3.3 剪力強度 3.3.1 需求剪力 3.3.2 剪力強度設計 3.4 細部設計 3.4.1 縱向鋼筋 3.4.2 橫向鋼筋 3.5 裂縫控制 3.5.1 適用範圍 3.5.2 使用載重下之剪力裂縫控制 3.5.3 使用載重下之撓曲裂縫控制 第四章 柱相關規定 4.1 適用範圍 4.2軸力與撓曲強度 4.2.1 斷面極限狀態與混凝土壓力區矩型應力塊 4.2.2 軸力強度 4.2.3 軸力與彎矩聯合作用之強度 4.3 剪力強度 4.3.1 剪力強度需求 4.3.2 最大可能彎矩強度 4.3.3 混凝土與橫向鋼筋強度上限 4.3.4 構材剪力強度 4.3.5 混凝土剪力強度 4.3.6 橫向鋼筋之剪力強度 4.4 圍束作用 第五章 梁柱接頭相關規定 5.1 適用範圍 5.2 剪力強度 5.2.1 接頭設計剪力 5.2.2 標稱剪力強度 5.3 接頭箍筋 5.4 接頭鋼筋伸展與錨定 5.4.1 梁主筋貫穿梁柱接頭之最小柱尺度 5.4.2 梁主筋終止於接頭內之伸展長度 第六章 結構牆與連接梁 6.1 適用範圍 6.2 結構牆 6.2.1 設計強度 6.2.1.1 軸力與彎矩 6.2.1.2 剪力 6.2.2 特殊邊界構材設計 6.2.3 特殊邊界構材細部要求 6.2.4 非特殊邊界構材要求 6.2.5 其他配筋細部 6.3 剪力連接梁 第七章 鋼筋伸展與續接 7.1 適用範圍 7.2 鋼筋伸展 7.2.1 鋼筋之直線伸展 7.2.2 標準彎鉤鋼筋之伸展 7.2.3 擴頭鋼筋之伸展 7.3 鋼筋續接 第八章 設計規定差異比較
類似書籍推薦給您
類似書籍推薦給您
類似書籍推薦給您
【簡介】 Description The 14th edition of the classic text, Design of Concrete Structures, is completely revised using the newly released 2008 ACI (American Concrete Institute) Code. This new edition has the same dual objectives as the previous editions; first to establish a firm understanding of the behavior of structural concrete, then to develop proficiency in the methods used in current design practice. Design of Concrete Structures covers the behavior and design aspects of concrete and provides updated examples and homework problems. New material on slender columns, seismic design, anchorage using headed deformed bars, and reinforcing slabs for shear using headed studs has been added. The notation has been thouroughly updated to match changes in the ACI Code. The text also presents the basic mechanics of structural concrete and methods for the design of individual members for bending, shear, torsion, and axial force, and provides detail in the various types of structural systems applications, including an extensive presentation of slabs, footings, foundations, and retaining walls. 【目錄】 Table of Contents 1 Introduction 2 Materials 3 Flexural Analysis and Design of Beams 4 Shear and Diagonal Tension in Beams 5 Bond, Anchorage, and Development Length 6 Serviceability 7 Analysis and Design for Torsion 8 Short Columns 9 Slender Columns 10 Strut-and-Tie Models 11 Design of Reinforcement at Joints 12 Analysis of Indeterminate Beams and Frames 13 Analysis and Design of Slabs 14 Yield Line Analysis for Slabs 15 Strip Method for Slabs 16 Footings and Foundations 17 Retaining Walls 18 Concrete Building Systems 19 Prestressed Concrete 20 Seismic Design