書名: R語言:金融演算法與台指期貨程式交易實務
作者: 酆士昌
ISBN: 9789864342259
出版社: 博碩
#資訊
#編程與軟體開發
#R語言
定價: 500
售價: 425
庫存: 已售完
LINE US! 詢問這本書 團購優惠、書籍資訊 等
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

為您推薦

衍生性金融商品:使用R語言

衍生性金融商品:使用R語言

類似書籍推薦給您

原價: 850 售價: 723 現省: 127元
立即查看
R語言:數學計算、統計模型與金融大數據分析 (2版)

R語言:數學計算、統計模型與金融大數據分析 (2版)

類似書籍推薦給您

原價: 560 售價: 476 現省: 84元
立即查看
財金時間序列分析:使用R語言(附光碟) (1版)

財金時間序列分析:使用R語言(附光碟) (1版)

類似書籍推薦給您

書名:財金時間序列分析:使用R語言(附光碟) 作者:林進益 出版社:五南 出版日期:2020/03/00 ISBN:9789577637604 內容簡介 ✎為實作派的你而寫——翻開本書,即刻上手! ✔提供完整程式語言,對照參考不出錯 ✔多種程式碼撰寫範例,臨陣套用、現學現賣   未來的國際通用語言只有一種——程式語言。FinTech強勢佔領金融市場,想在瞬息萬變的財金領域脫穎而出,就要具備程式語言邏輯的知能。   ●打造沉浸式R語言的學習環境   本書用統計學觀點,檢視實際的財金時間序列資料,臨場感十足。讀取、計算、模擬、編表或繪圖,皆詳細收錄對應的R程式,不省略不馬虎,對應實作好簡單。   ●比起理論,更重視實際操作   不僅強調理論與實際結合,同時包括蒙地卡羅、拔靴與貝氏計量等模擬方法。提供許多R程式碼撰寫範例,情境式學習,效果更加分。   ●拜程式語言的強大,學習門檻大幅降低   除了適合大學部或研究所的 「時間序列分析」 、「計量經濟學」 或 「應用統計」 等課程;搭配貼心解說的「附錄」使用,也適合從零開始的讀者自修。 目錄 Chapter 1 迴歸模型 ( 一) 1. 迴歸模型的意義 2. OLS 估計式的幾何特徵 2.1 OLS 估計式的數值特徵 2.2 Frisch-Waugh-Lovell 定理 3. 迴歸模型的假定與OLS 3.1 AT、AL 與AFR 的意義 3.2 AX 的假定 3.3 AH 與AN 的假定 3.4 Mann-Wald 定理 Chapter 2 迴歸模型 ( 二) 1. 統計推論 1.1 有關於β 的線性假設檢定 1.2 線性限制下的估計 1.3 一個例子:MRW(1992) 2. LR、Wald 與LM 檢定 2.1 ML 估計 2.2 LR、Wald 與LM 檢定 3. 初見拔靴法 3.1 拔靴法的原理 3.2 拔靴法於迴歸模型的應用 Chapter 3 ARIMA 模型 ( 一) 1. 隨機過程 1.1 定態的隨機過程 1.2 定態隨機過程之建構 1.3 落後運算式的應用 2. AR 過程 2.1 AR(p) 過程 2.2 衝擊反應函數 Chapter 4 ARIMA 模型( 二) 1. ARIMA 模型 1.1 MA 過程 1.2 ARMA 過程 1.3 ARIMA 模型的建立 1.4 預測 2. 非定態隨機過程的考量 2.1 虛假迴歸模型 2.2 Beveridge-Nelson 分解 Chapter 5 頻譜分析 1. 認識週期函數 1.1 正弦與餘弦函數 1.2 季節模型 2. 母體頻譜 2.1 自我共變異數產生函數 2.2 母體頻譜與其特徵 3. 母體頻譜的意義 3.1 母體頻譜的解釋 3.2 樣本週期圖 3.3 長期變異數 4. 母體頻譜的估計 4.1 長期變異數的估計 4.2 母體頻譜的估計 Chapter 6 單根檢定 1. 非定態分配理論 1.1 定態與非定態隨機過程變數 1.2 非定態變數的漸近分析 2. 傳統的單根檢定 2.1 DF 檢定 2.2 ADF 檢定 2.3 PP 檢定 2.4 KPSS 檢定 3. 較有效的單根檢定 3.1 除去趨勢化 3.2 ERS 檢定 3.3 有效的修正PP 檢定 Chapter 7 VAR 模型 1. SUR 模型與線性VAR 過程 1.1 SUR 模型 1.2 線性VAR 過程 2. VAR 模型的估計 2.1 OLS 與ML 估計 2.2 RGLS 估計 3. 定態的VAR 模型 3.1 預測 3.2 落後期p 選擇過程 3.3 Granger 因果關係 3.4 衝擊反應函數 3.5 預測誤差之變異數拆解 3.6 診斷檢定 4. 拔靴法 4.1 AR(p) 模型 4.2 VAR(p) 模型 Chapter 8 貝氏VAR 模型 1. 貝氏統計方法 1.1 貝氏理論與計算 1.2 線性迴歸模型 2. Gibbs 抽樣方法 2.1 線性迴歸模型的應用 2.2 Gibbs 抽樣的收斂 3. VAR 模型的應用 3.1 BVAR 模型 3.2 Minnesota 先驗 參考文獻 中文索引 英文索引 詳細資料 ISBN:9789577637604 規格:平裝 / 452頁 / 19 x 26 x 2.26 cm / 普通級 / 單色印刷 / 初版 出版地:台灣 本書分類:商業理財> 會計/統計> 統計軟體分析 本書分類:專業/教科書/政府出版品> 財經類> 統計> 統計軟體

原價: 590 售價: 502 現省: 88元
立即查看
財金統計學:使用R語言

財金統計學:使用R語言

類似書籍推薦給您

原價: 850 售價: 723 現省: 127元
立即查看
基礎統計與R語言 (1版)

基礎統計與R語言 (1版)

類似書籍推薦給您

【簡介】 ⊙系統性內容編排:章節難度由淺至深安排,循序漸進建構知識。 ⊙實務應用導向:透過案例,學習運用各種統計方法分析問題,並以R語言的統計程式套件,解決不同的統計模式,達到做中學的學習效果。 ⊙提供習題演練:各章節皆附有習題,學習成效輕鬆驗收。 【以R語言學習統計,邊做邊學好懂易上手】 本書以R語言作為統計學教學的嚮導,運用R語言之程式套件中世界各地實際的研究個案與資料,讓學習者認識各種統計方法,解決不同的統計模式,也能了解統計在各方面的應用。 書中章節安排難度由淺至深,循序漸進帶領學習者一一攻克各種統計方法,內容包含:R語言基礎指令操作、單變數資料、兩個與多個變數資料、機率、離散型機率分配、連續型機率分配、抽樣分配、常態近似與自助抽樣法、估計、統計假說檢定、變異數分析:多個母體平均數比較、簡單線性迴歸分析、多元線性迴歸分析、適合度檢定:類別資料分析、無母數統計等。各章節最末提供習題,讓學習者可透過演練驗收學習成效,加深記憶、鞏固知識。 【目錄】 第1章 R語言基礎指令操作 1.1 簡介 1.2 把R當作計算器 1.3 幾個常用函數 1.4 以c()輸入資料(using c() to enter data) 1.5 資料結構(creating structured data) 1.6 作平面圖 1.7 由其他資源取得資料(reading in other sources of data) 1.8 習題 第2章 單變數資料 2.1 質性資料(qualitative data) 2.2 量化資料(numeric data) 2.3 中間趨勢(central tendency) 2.4 分散程度(dispersion) 2.5 習題 第3章 兩個或多個變數資料 3.1 成對類別變數(pairs of categorical variables) 3.2 量化資料獨立樣本分配比較(comparing independent samples) 3.3 成對數字資料之關係(relationships in numeric data) 3.4 多變數資料(multivariate data) 3.5 習題 第4章 機率 4.1 機率定義 4.2 機率問題的結構:機率空間(probability space) 4.3 機率公式 4.4 等機率模式(equally likely model) 4.5 計數方法(counting methods) 4.6 條件機率(conditional probability) 4.7 獨立事件(independent event) 4.8 貝氏定理(Bayes’ Rule) 4.9 習題 第5章 離散型機率分配 5.1 隨機變數(random variable) 5.2 離散型隨機變數之機率函數(probability function of discrete random variable) 5.3 離散型隨機變數之平均數、變異數與標準差(mean, variance, and standard deviation of discrete random variable) 5.4 離散型均勻分配(the discrete uniform distribution) 5.5 二項分配(the binomial distribution) 5.6 超幾何分配(the hypergeometric distribution) 5.7 幾何分配(the geometric distribution) 5.8 負二項分配(the negative binomial distribution) 5.9 普瓦松分配(the Poisson distribution) 5.10 習題 第6章 連續型機率分配 6.1 連續型機率函數(probability density functions) 6.2 連續型均勻分配(the continuous uniform distribution) 6.3 常態分配(normal distribution) 6.4 指數分配(exponential distribution) 6.5 卡方分配、T分配與F分配(the chi-square, student’s t, and Snedecor’s f distributions) 6.6 習題 第7章 抽樣分配 7.1 隨機抽樣(random sampling) 7.2 抽樣分配(sampling distribution) 7.3 樣本平均數抽樣分配(distribution of sample mean) 7.4 兩獨立樣本平均數差的分配(the distribution of difference of two independent sample means) 7.5 樣本變異數分配(the distribution of the sample variance) 7.6 習題 第8章 常態近似與自助抽樣法 8.1 模擬(simulation)與中央極限定理(central limit theorem) 8.2 以常態分配近似二項分配(the normal approximation for the binomial) 8.3 以常態分配近似普瓦松分配 8.4 以常態分配近似卡方分配 8.5 樣本中位數之分配 8.6 自助抽樣法(bootstrap method) 8.7 習題 第9章 估計 9.1 點估計 9.2 點估計量的性質 9.3 母體平均數之區間估計(confidence intervals for means) 9.4 一個母體比例p的信賴區間 9.5 一個常態母體變異數的信賴區間 9.6 決定樣本數 9.7 兩個母體平均數差的信賴區間(confidence intervals for differences of two means) 9.8 兩個非常態母體平均數差的信賴區間 9.9 兩母體比例差p1–p2之信賴區間 9.10 母體平均數差配對樣本區間估計 9.11 兩常態母體變異數比例σ21/σ22區間估計(confidence interval of ratio of two independent sample variances) 9.12 習題 第10章 統計假說檢定 10.1 統計假說(statistical hypothesis) 10.2 型I誤(type I error)與型II誤(type II error) 10.3 檢定方法:棄卻域法、p值法與信賴區間法 10.4 一個常態母體平均數檢定(one sample tests for means of normal distributions) 10.5 一個非常態母體平均數檢定(one sample tests for means of nonnormal distributions) 10.6 一個母體比例檢定(test for a population proportion) 10.7 一個常態母體變異數σ2的檢定(test for a normal population variance) 10.8 兩常態母體平均數差的檢定(tests for differences of two means) 10.9 兩非常態母體平均數差的檢定(tests for differences of two means) 10.10 母體平均數差配對樣本檢定 10.11 兩母體比例差p1–p2之檢定 10.12 兩獨立樣本變異數比例σ21/σ22檢定(test of ratio of two independent sample variances) 10.13 習題 第11章 變異數分析:多個母體平均數比較 11.1 單因子變異數分析(one-way ANOVA) 11.2 單因子變異數分析多重比較(multiple comparisons) 11.3 雙因子變異數分析:含交互作用(two-way ANOVA) 11.4 雙因子變異數分析多重比較(multiple comparisons) 11.5 雙因子變異數分析:不含交互作用(two-way ANOVA without interaction effect) 11.6 習題 第12章 簡單線性迴歸分析 12.1 模式意義與假設 12.2 迴歸係數最佳估計量之分配(point estimates of the regression line) 12.3 直線迴歸線的區間估計與預測(interval estimates of the regression line and prediction) 12.4 判定係數與相關係數(coeffcient of determination and correlation coefficient) 12.5 殘差分析(residuals analysis):檢視模式假設 12.6 習題 第13章 多元線性迴歸分析 13.1 多元線性迴歸模式(the multiple linear regression model) 13.2 多元線性迴歸係數估計(parameter estimates) 13.3 多元迴歸係數之估計與檢定(estimation and test of the regression coefficients) 13.4 迴歸方程式之信賴區間與預測區間(confidence and prediction intervals) 13.5 多元判定係數(multiple coefficient of determination) 13.6 全模式檢定(overall F test) 13.7 交互作用檢定(test of interaction effect) 13.8 聯合假說檢定(joint hypotheses test) 13.9 虛擬自變數(dummy variables or qualitative explanatory variables) 13.10 適當模式選擇(model selection) 13.11 習題 第14章 適合度檢定:類別資料分析 14.1 多項分配(the multinomial distribution) 14.2 皮爾生卡方統計量(Pearson’s chi-square statistic)與適合度檢定(goodness of fit test) 14.3 連續型機率分配檢定(test of continuous distributions by chisquare statistic) 14.4 多項分配的比較 14.5 獨立性檢定(the chi-squared test of independence) 14.6 辛普森悖論 14.7 習題 第15章 無母數統計 15.1 符號檢定(the sign test) 15.2 威爾卡森符號排序檢定(the Wilcoxon signed-rank test) 15.3 兩母體中位數差檢定(the Wilcoxon rank-sum test for equality of center或the Mann-Whitney U) 15.4 單因子變異數分析:K-W 檢定(Kruskal-Wallis test) 15.5 雙因子變異數分析:Friedman 檢定 15.6 Spearman 排序相關係數 15.7 習題 參考資料 1.1  簡介   「R」是一款專為統計而創的免費自由軟體,由奧克蘭(Auckland)大學統計系的兩位研究員Robert Gentleman與Ross Ihaka,及其他志願人員,於1995至1997年所開發,雖然原始對象為專業的統計工作者,但過去的十多年來,世界各地皆有愛好者採用,共同回饋、開發出更多好用的功能,至今仍蓬勃發展中。由於R是免費軟體並且提供所有原始碼,所以各大專院校的統計課程也都紛紛捨棄SAS、SPSS、Matlab等商業套裝軟體而改用R。 【R的優點】 1. 大數據(Big Data)是當下最流行名詞,過去的統計分析是用歷史資料分析或預測明天的可能,現在的大數據分析是企圖用「母體」的資料分析或預測「接下來」會發生的可能事件,所以R語言是學習一個「親民」的大數據軟體。 2. R是一套免費的(Free)軟體,不會有版本的問題,也不會有經費預算的問題。 3. R每年修正兩次,程式套件功能以及模組越來越強大,可解各種各樣新的統計模式。 4. R中之程式套件中包含許多世界各地實際的研究個案與資料,可讓統計學習者體認到統計在各方面的應用。 5. R也可以進行統計分析與資料採礦(Data Mining)。 【安裝R之步驟】 步驟一:讀者可在網路上鍵入R的官方網站www.r-project.org,隨即出現的即是R的首頁。 步驟二:點選CRAN(Comprehensive R Archive Network的簡稱),則會出現CRAN Mirrors的網頁。 步驟三:在CRAN Mirrors網頁的左手邊各地區的欄位中,選擇距離讀者最近的所在地的CRAN Mirrors。如在臺灣,可選Taiwan下的http://ftp.yzu.edu.tw/CRAN/或http://cran.csie.ntu.edu.tw/。點選後則會出Comprehensive R Archive Network的畫面。 步驟四:點選The Comprehensive R Archive Network畫面的第一個分格Download and Install R中的Download R for Windows選項。 步驟五:點選在R for Windows 中Subdirectories下base後的install R for the first time,此時會出現R-4.4.1 for Windows (32/64 bit) 畫面。(因軟體版本持續更新,畫面出現的版本標示可能與本書不同,屬正常) 步驟六:點選在R-4.4.1 for Windows (32/64 bit)下的Download R 4.4.1 for Windows(62 megabytes, 32/64 bit) 選項,此時在螢幕左下方會出現R-4.4.1-win.exe的訊息。待下載完成後即可點選執行。執行完成後,您的桌面螢幕上就會有個R平台符號,點選該符號R主控台視窗即會出現,視窗字幕最後出現的紅色>即是R的提示符號,所有的指令都得鍵在此符號之後提交R軟體執行各種指令。 1.2  把R當作計算器   R基本介面是一個互動式指令視窗,當一個R程式需要使用者輸入指令時,它會顯示指令提示符號(prompt symbol),指令提示符號通常是一個>(大於符號)。當使用者輸入完整的運算式,則運算式指令輸入後的結果,R會馬上顯示在指令下方。學習R最好的方法,就是動手使用R,初學者要了解R,可先進行一些簡單實例的演練,將R 當作計算器使用是R最簡單的應用,加、減、乘、除的符號分別為+、–、*與 /,次方以^表示之。若在同一列上要打上兩個或兩個以上的指令,就須以分號(;)隔開。打上指令後,按下執行鍵,結果會出現在以[1]開頭的下一列中。#號後,用來說明或解釋指令,如下: > 2 + 2 [1] 4 # 輸出資料第一個為[1] 表示第一個資料 > 2-2; 2*2; 2/2 # 以; 分開不同指令 [1] 0 [1] 4 [1] 1 > 2 ^ 2 # 2 的2 次方 [1] 4 > (1–2) * 3 [1] – 3 > 1–2 * 3 [1] − 5 > 2/3 + 1; (1+4*3)/2 [1] 1.666667 [1] 6.5

原價: 580 售價: 493 現省: 87元
立即查看