定價: | ||||
售價: | 2100元 | |||
庫存: | 已售完 | |||
LINE US! | 詢問這本書 團購優惠、書籍資訊 等 | |||
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單 | ||||
付款方式: | 超商取貨付款 |
![]() |
|
信用卡 |
![]() |
||
線上轉帳 |
![]() |
||
物流方式: | 超商取貨 | ||
宅配 | |||
門市自取 |
為您推薦
類似書籍推薦給您
類似書籍推薦給您
【簡介】 3D deep learning is a rapidly evolving field that has the potential to transform various industries. This book provides a comprehensive overview of the current state-of-the-art in 3D deep learning, covering a wide range of research topics and applications. It collates the most recent research advances in 3D deep learning, including algorithms and applications, with a focus on efficient methods to tackle the key technical challenges in current 3D deep learning research and adoption, therefore making 3D deep learning more practical and feasible for real-world applications. This book is organized into five sections, each of which addresses different aspects of 3D deep learning. Section I: Sample Efficient 3D Deep Learning, focuses on developing efficient algorithms to build accurate 3D models with limited annotated samples. Section II: Representation Efficient 3D Deep Learning, deals with the challenge of developing efficient representations for dynamic 3D scenes and multiple 3D modalities. Section III: Robust 3D Deep Learning, presents methods for improving the robustness and reliability of deep learning models in real-world applications. Section IV: Resource Efficient 3D Deep Learning, explores ways to reduce the computation cost of 3D models and improve their efficiency in resource-limited environments. Section V: Emerging 3D Deep Learning Applications, showcases how 3D deep learning is transforming industries and enabling new applications for healthcare and manufacturing. This collection is a valuable resource for researchers and practitioners interested in exploring the potential of 3D deep learning. 【目錄】
類似書籍推薦給您
本暢銷系列作品的第4本書,這次的主題是強化學習。書中延續此系列的一貫風格,顯示實際的程式碼,讓讀者邊執行邊學習,不依賴外部程式庫,從零開始建置、學習支撐強化學習的基本技術與概念。 從「理論」與「實踐」兩方面著手,仔細解說強化學習這個複雜主題的構成要素,讓讀者確實掌握強化學習的獨特理論。有別於只用公式說明理論的書籍,讀者可以從書中的程式碼,獲得許多意想不到的領悟。 回頁首 斎藤康毅 1984年生於長崎縣對馬,畢業於東京工業大學工學院,東京大學研究所學際情報學府學士課程修畢。現在於企業內從事與電腦視覺、機器學習有關的研究開發工作。1984年生於長崎縣對馬,畢業於東京工業大學工學院,東京大學研究所學際情報學府學士課程修畢。現在於企業內從事與電腦視覺、機器學習有關的研究開發工作。 目錄 第 1 章 吃角子老虎機問題 第 2 章 馬可夫決策過程 第 3 章 貝爾曼方程式 第 4 章 動態規劃法 第 5 章 蒙地卡羅法 第 6 章 TD 法 第 7 章 類神經網路與 Q 學習 第 8 章 DQN 第 9 章 策略梯度法 第 10 章 進階內容 附錄 A 離線策略蒙地卡羅法 附錄 B n 步 TD 法 附錄 C 理解 Double DQN 附錄 D 驗證策略梯度法
類似書籍推薦給您