書名: Deep Learning 3:用 Python 進行深度學習框架的開發實作 (1版)
作者: 斎藤康毅
譯者: 吳嘉芳
版次: 1
ISBN: 9789865027346
出版社: O’REILLY
書籍開數、尺寸: 18.5x23x2.19
頁數: 488
內文印刷顏色: 單色
#資訊
#AI人工智慧與機器學習
定價: 780
售價: 663
庫存: 已售完
LINE US! 詢問這本書 團購優惠、書籍資訊 等
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

詳細資訊

Deep Learning 3:用Python進行深度學習框架的開發實作 系列名:電腦通訊 ISBN13:9789865027346 出版社:美商歐萊禮 作者:齊藤康毅 譯者:吳嘉芳 裝訂/頁數:平裝/488頁 規格:23cm*18.5cm*2.1cm (高/寬/厚) 出版日:2021/04/06 中國圖書分類:特殊電腦方法 內容簡介   從無到有的實作,在動手做的過程中強化對於深度學習的理解   或許您也曾經用過Tensorflow、PyTorch這類深度學習的框架(Framework),相信您也曾經對裡頭那些神奇的技術與有趣的結構嘆服不已。這本書就是為了解開這些疑問,正確瞭解這些技術而撰寫的。希望你可以從中體會這種技術性的「樂趣」。基於這個目的,本書將秉持著「從零開始製作」的方針,從無到有,一邊操作,一邊思考,透過實作加深理解,獲得審視現代深度學習框架的「新視野」。再藉由這個「新視野」,更廣泛、深入地理解深度學習。   高人氣、高評價的「Deep Learning基礎理論實作」系列第三部   《Deep Learning:用Python進行深度學習的基礎理論實作》、《Deep Learning 2|用Python進行自然語言處理的基礎理論實作》是從零開始進行深度學習,藉此瞭解相關結構。當時以單純性為優先,而「手動」設定了運算的「連結」。真正的框架是將這個部分自動化,Define-by-Run就是其中的一種手法,本書將利用從零開始製作DeZero的方式來學習這個機制。請別擔心,閱讀這本書不需要具備前作《Deep Learning:用Python進行深度學習的基礎理論實作》系列的知識。 目錄 第一階段 自動計算微分 STEP 1 把變數當成箱子 STEP 2 產生變數的函數 STEP 3 連結函數 STEP 4 數值微分 STEP 5 誤差反向傳播法的理論 STEP 6 手動執行誤差反向傳播法 STEP 7 誤差反向傳播法的自動化 STEP 8 從遞迴到迴圈 STEP 9 讓函數更方便 STEP 10 測試 第二階段 用自然的程式碼呈現 STEP 11 可變長度引數(正向傳播篇) STEP 12 可變長度引數(改善篇) STEP 13 可變長度引數(反向傳播篇) STEP 14 重複使用相同變數 STEP 15 複雜的計算圖(理論篇) STEP 16 複雜的計算圖(執行篇) STEP 17 記憶體管理與循環參照 STEP 18 減少記憶體用量的模式 STEP 19 輕鬆使用變數 STEP 20 運算子多載(1) STEP 21 運算子多載(2) STEP 22 運算子多載(3) STEP 23 整合成套件 STEP 24 複雜函數的微分 第三階段 計算高階微分 STEP 25 計算圖視覺化(1) STEP 26 計算圖視覺化(2) STEP 27 泰勒展開式的微分 STEP 28 函數最佳化 STEP 29 使用牛頓法最佳化(手動計算) STEP 30 高階微分(準備篇) STEP 31 高階微分(理論篇) STEP 32 高階微分(執行篇) STEP 33 使用牛頓法最佳化(自動計算) STEP 34 sin 函數的高階微分 STEP 35 高階微分的計算圖 STEP 36 高階微分以外的用途 第四階段 建立類神經網路 STEP 37 處理張量 STEP 38 改變形狀的函數 STEP 39 加總函數 STEP 40 進行廣播的函數 STEP 41 矩陣乘積 STEP 42 線性迴歸 STEP 43 類神經網路 STEP 44 整合參數層 STEP 45 整合各層的整合層 STEP 46 用 Optimizer 更新參數 STEP 47 Softmax 函數與交叉熵誤差 STEP 48 多值分類 STEP 49 Dataset 類別與事前處理 STEP 50 取出小批次的 DataLoader STEP 51 MNIST 的學習 第五階段 使用DeZero 進行挑戰 STEP 52 支援 GPU STEP 53 儲存與載入模型 STEP 54 Dropout 與測試模式 STEP 55 CNN 的機制(1) STEP 56 CNN 的機制(2) STEP 57 conv2d 函數與 pooling 函數 STEP 58 具代表性的 CNN(VGG16) STEP 59 用 RNN 處理時間序列資料 STEP 60 LSTM 與 DataLoader APP A 原地演算法(STEP 14 的補充說明) APP B 執行get_item 函數(STEP 47 的補充說明) APP C 在 Google Colaboratory 執行

為您推薦

Deep Learning(2) : 用Python進行自然語言處理的基礎理論實作

Deep Learning(2) : 用Python進行自然語言處理的基礎理論實作

其他會員也一起購買

書名:DEEP LEARNING 2|用PYTHON進行自然語言處理的基礎理論實作 出版社:歐萊禮 出版年月:201903 條碼:9789865020675 內容簡介 本書是《Deep Learning : 用Python進行深度學習的基礎理論實作》的續篇,將延續上一本書,繼續介紹與深度學習有關的技術。本書尤其偏重在自然語言處理及時間序列資料處理上,使用深度學習,挑戰各式各樣的問題。和上一本著作一樣,以「從零開始建構」為概念,詳盡介紹與深度學習有關的先進技術。 簡單來說,自然語言處理是指,讓電腦瞭解我們平常說話內容的技術。事實上,這種自然語言處理技術已經大大改變了我們的生活。在網頁搜尋、機械翻譯、語音助理等深深影響世界的技術根基中,已經使用了自然語言處理技術。本書把重點放在自然語言處理及時間序列資料處理上,學習在深度學習中,十分重要的技術。具體而言是指,word2vec、RNN、LSTM、GRU、seq2seq、Attention等技術。本書盡量使用淺顯易懂的說明,解說這些技術,並透過實際操作,確認你是否理解。此外,本書希望藉由實驗,讓你實際感受到這些技術的可能性。 目錄 第一章 複習類神經網路 第二章 自然語言與字詞的分散式表示 第三章 word2vec 第四章 word2vec的高速化 第五章 遞歸神經網路(RNN) 第六章 含閘門的RNN 第七章 使用RNN產生文章 第八章 Attention 附錄A sigmoid函數與tanh函數的微分 附錄B 啟用WordNet 附錄C GRU

原價: 680 售價: 578 現省: 102元
立即查看
Deep Learning: 用Python進行深度學習的基礎理論實作

Deep Learning: 用Python進行深度學習的基礎理論實作

其他會員也一起購買

書名:DEEP LEARNING|用PYTHON進行深度學習的基礎理論實作 出版社:歐萊禮 出版年月:201708 條碼:9789864764846 內容簡介 不走捷徑,幫助您真正搞懂「深度學習」的真義 這是一本與「深度學習」有關的書籍。從入門開始說明,一步一步帶領你瞭解深度學習必須具備的知識。本書可以幫助您了解:深度學習究竟是什麼?有何特色?根據何種原理來運作? 從零開始,由實做中學習 本書的目標是,盡量避免使用不瞭解內容的「黑盒子」,以基礎的知識為起點,以容易上手的Python撰寫程式,從動手實作的過程中,一步步深入瞭解深度學習。若以車用書籍來比喻這本書的話,這本書並不屬於汽車駕訓教材,而是希望能夠幫助您瞭解車子的原理,而非教您開車的方法。為了瞭解汽車的結構,必須試著打開車子的引擎蓋,將每個零件都拿起來觀察、操作看看。然後盡量用簡單的形狀,篩選出車子的核心部分,就像組合迷你模型般,製作出這台車子。本書的目標,就是透過製作車子的過程,讓你感受到自己實際可以製作出車子,進而熟悉與車子的相關技術。 本書特色: .利用最少的外部函式庫,使用Python,從零開始實際執行深度學習的程式。 .說明Python 的用法,讓Python 的初學者也能理解。 .實際執行Python 的原始碼,同時提供讀者手邊可以進行實驗的學習環境。 .從簡單的機器學習問題開始,到最後執行精密辨識影像的系統。 .以淺顯易懂的方式說明深度學習與神經網路理論。 .針對看似複雜的技術,如誤差反向傳播與卷積運算等,利用實際操作方式說明,幫助理解。 .介紹在執行深度學習時,有幫助且實用的技巧,包括決定學習率的方法、權重的預設值等。 .說明Batch Normalization、Dropout、Adam 等最近的趨勢與操作。 .為什麼深度學習很優秀,為什麼加深層數,就能提高辨識準確度,為什麼隱藏層很重要,仔細說明這些「為什麼」。 .介紹自動運作、產生影像、強化學習等深度學習的應用範例。 作者介紹 作者簡介 斎藤康毅 1984年生於長崎縣對馬,畢業於東京工業大學工學院,東京大學研究所學際情報學府學士課程修畢。現在於企業內從事與電腦視覺、機器學習有關的研究開發工作。1984年生於長崎縣對馬,畢業於東京工業大學工學院,東京大學研究所學際情報學府學士課程修畢。現在於企業內從事與電腦視覺、機器學習有關的研究開發工作。 目錄 第一章 Python入門 第二章 感知器 第三章 神經網路 第四章 神經網路的學習 第五章 誤差反向傳播法 第六章 與學習有關的技巧 第七章 卷積神經網路 第八章 深度學習 附錄A Softmax-with-Loss層的計算圖 參考文獻

原價: 580 售價: 493 現省: 87元
立即查看
人工智慧:智慧型系統導論3/e (3版)

人工智慧:智慧型系統導論3/e (3版)

相關熱銷的書籍推薦給您

書名:人工智慧:智慧型系統導論(第三版) 作者:李聯旺 出版社:全華 ISBN:9789862800959

原價: 590 售價: 519 現省: 71元
立即查看
Deep Learning 4|用Python進行強化學習的開發實作 (1版)

Deep Learning 4|用Python進行強化學習的開發實作 (1版)

類似書籍推薦給您

本暢銷系列作品的第4本書,這次的主題是強化學習。書中延續此系列的一貫風格,顯示實際的程式碼,讓讀者邊執行邊學習,不依賴外部程式庫,從零開始建置、學習支撐強化學習的基本技術與概念。 從「理論」與「實踐」兩方面著手,仔細解說強化學習這個複雜主題的構成要素,讓讀者確實掌握強化學習的獨特理論。有別於只用公式說明理論的書籍,讀者可以從書中的程式碼,獲得許多意想不到的領悟。 回頁首 斎藤康毅 1984年生於長崎縣對馬,畢業於東京工業大學工學院,東京大學研究所學際情報學府學士課程修畢。現在於企業內從事與電腦視覺、機器學習有關的研究開發工作。1984年生於長崎縣對馬,畢業於東京工業大學工學院,東京大學研究所學際情報學府學士課程修畢。現在於企業內從事與電腦視覺、機器學習有關的研究開發工作。 目錄 第 1 章 吃角子老虎機問題 第 2 章 馬可夫決策過程 第 3 章 貝爾曼方程式 第 4 章 動態規劃法 第 5 章 蒙地卡羅法 第 6 章 TD 法 第 7 章 類神經網路與 Q 學習 第 8 章 DQN 第 9 章 策略梯度法 第 10 章 進階內容 附錄 A 離線策略蒙地卡羅法 附錄 B n 步 TD 法 附錄 C 理解 Double DQN 附錄 D 驗證策略梯度法

原價: 680 售價: 578 現省: 102元
立即查看
MACHINE AND DEEP LEARNING USING MATLAB: ALGORITHMS AND TOOLS FOR SCIENTISTS AND ENGINEERS (1版)

MACHINE AND DEEP LEARNING USING MATLAB: ALGORITHMS AND TOOLS FOR SCIENTISTS AND ENGINEERS (1版)

類似書籍推薦給您

原價: 1800 售價: 1800 現省: 0元
立即查看
Deep Learning for 3D Vision Algorithms and Applications

Deep Learning for 3D Vision Algorithms and Applications

類似書籍推薦給您

【簡介】 3D deep learning is a rapidly evolving field that has the potential to transform various industries. This book provides a comprehensive overview of the current state-of-the-art in 3D deep learning, covering a wide range of research topics and applications. It collates the most recent research advances in 3D deep learning, including algorithms and applications, with a focus on efficient methods to tackle the key technical challenges in current 3D deep learning research and adoption, therefore making 3D deep learning more practical and feasible for real-world applications. This book is organized into five sections, each of which addresses different aspects of 3D deep learning. Section I: Sample Efficient 3D Deep Learning, focuses on developing efficient algorithms to build accurate 3D models with limited annotated samples. Section II: Representation Efficient 3D Deep Learning, deals with the challenge of developing efficient representations for dynamic 3D scenes and multiple 3D modalities. Section III: Robust 3D Deep Learning, presents methods for improving the robustness and reliability of deep learning models in real-world applications. Section IV: Resource Efficient 3D Deep Learning, explores ways to reduce the computation cost of 3D models and improve their efficiency in resource-limited environments. Section V: Emerging 3D Deep Learning Applications, showcases how 3D deep learning is transforming industries and enabling new applications for healthcare and manufacturing. This collection is a valuable resource for researchers and practitioners interested in exploring the potential of 3D deep learning. 【目錄】

原價: 5112 售價: 5112 現省: 0元
立即查看