書名: Python資料可視化攻略
作者: 小久保奈都彌
ISBN: 9789865028039
出版社: 碁峰
書籍開數、尺寸: 17x23x1.36
頁數: 232
內文印刷顏色: 全彩
#資訊
#編程與軟體開發
定價: 480
售價: 408
庫存: 已售完
LINE US! 詢問這本書 團購優惠、書籍資訊 等
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

詳細資訊

內容簡介   用大家都能聽懂的方式,告訴您如何將分析資料視覺化!   什麼是資料視覺化?   這是一種將數字資料、地理資料、文字等各種資料,做成圖表,讓人一看就懂的技巧與手法   為什麼需要資料視覺化?   自從「大數據」與「人工智慧」技術興起之後,如何善用資料變成一件非常重要的事情,要讓資料有效的被利用與理解,視覺化是一種非常有效的方法。Python擁有非常豐富的函式庫,可以簡單地處理資料視覺化,所以有越來越多的人使用。   藉由本書您將可以了解:   .如何將資料分析的結果,以直觀的方式表達   .如何根據資料的類型,選擇合適的圖表   .何謂資訊圖表以及如何製作資訊圖表   來自讀者的讚譽   「對於想要用Python處理資料視覺化的初學者而言,是很親切的入門書」   「查閱方便,想要做什麼樣的圖表,可以即時查閱」 目錄 Chapter 1 何謂資料視覺化 Chapter 2 資料視覺化所需的思維 Chapter 3 本書使用的環境 Chapter 4 利用Python操作資料的基本知識 Chapter 5 利用各種圖表視覺化資料 Chapter 6 定位資訊視覺化手法 Chapter 7 文字資訊的視覺化手法 Chapter 8 資訊圖表的視覺化手法 Appendix 資料視覺化的調色盤

為您推薦

Python資料可視化之美:極專業圖表製作高手書

Python資料可視化之美:極專業圖表製作高手書

類似書籍推薦給您

原價: 780 售價: 663 現省: 117元
立即查看
資料可視化王者:用Python讓AI活躍在圖表世界中 (1版)

資料可視化王者:用Python讓AI活躍在圖表世界中 (1版)

類似書籍推薦給您

原價: 1580 售價: 1422 現省: 158元
立即查看
看圖學Python:資料分析與資料視覺化 (1版)

看圖學Python:資料分析與資料視覺化 (1版)

類似書籍推薦給您

【簡介】 本書特色 1. 由淺入深,循序漸進 從基礎Python語言開始講解,適合初學者入門。完整說明Python程式設計的基本能力,包括變數、資料型態、控制流程、函式、物件導向等。 2. 圖文並茂,易學易懂 使用大量圖例和流程圖來詳細說明程式設計的觀念和語法,讓讀者更容易理解。 3. 結合ChatGPT,提升學習效率 介紹ChatGPT生成式AI,並提供了各種程式設計實例,幫助讀者更有效地學習Python。 4. 完整涵蓋Pandas資料分析 詳細說明Pandas套件的Python資料分析,包括資料匯入、匯出、篩選、編輯、彙整、清理、排序、合併、運算、群組分析、樞紐分析表、資料視覺化等。 5. 實戰導向,學以致用 本書提供大量實作範例,幫助讀者將所學知識應用於實際情況中。 內容簡介 本書是一本學習Python程式設計和資料分析的入門教材,適合初學者輕鬆上手。以Excel使用者的角度,詳細說明Pandas套件的Python資料分析,並透過ChatGPT生成式AI的幫助,讓讀者能夠更快、更輕鬆地學習Python程式設計和資料分析。 首先,本書從介紹Python程式語言的基礎開始,徹底解說讀者需要具備的程式設計能力,並介紹OpenAI推出的ChatGPT生成式AI,探討其在程式設計中的應用,以及如何利用ChatGPT來協助學習Python程式設計等相關技術。 其次,本書重點闡述Pandas套件在Python資料分析中的應用。從建立Series和DataFrame物件開始,逐步介紹了如何匯入和匯出不同格式的資料,以及如何進行資料篩選、操作和彙整。特別是在第14章至第16章中,通過具體的範例,讀者將學會如何進行資料清理、排序、合併,以及執行各種資料運算和視覺化。 本書的獨特之處在於將ChatGPT生成式AI融入到學習過程中,通過ChatGPT的幫助,讀者不僅可以寫出Python程式碼,還能夠自動產生商業模擬數據的學習範例,使得學習過程更加生動有趣,並且實際應用到商業資料分析中。 最後,本書使用豐富的圖例和流程圖詳細解說程式設計的觀念和語法,並利用fChart流程圖直譯器呈現動畫流程圖,幫助讀者更好地理解程式邏輯,從而提升解決問題的能力和思維邏輯。 《看圖學Python:資料分析與資料視覺化》不僅適用於計算機概論、程式設計和Python資料分析課程的教學,也是自學Python和資料分析的理想選擇。無論是對於初學者還是有一定程式基礎的讀者,本書都將成為你的良師益友,引領你踏入Python程式設計和資料分析的世界。 【目錄】 CH01 Python語言與運算思維基礎 1-1 程式與程式邏輯 1-2 認識Python、運算思維和Thonny 1-3 下載與安裝Thonny 1-4 使用Thonny建立第一個Python程式 1-5 Thonny基本使用與程式除錯 CH02 寫出和認識Python程式 2-1 開發Python程式的基本步驟 2-2 編輯現存的Python程式 2-3 建立第二個Python程式的加法運算 2-4 看看Python程式的內容 2-5 Python文字值 2-6 Python寫作風格 CH03 變數、運算式與運算子 3-1 程式語言的變數 3-2 在程式使用變數 3-3 變數的資料型態和型態轉換函數 3-4 讓使用者輸入變數值 3-5 認識運算式和運算子 3-6 在程式使用運算子 CH04 條件判斷 4-1 你的程式可以走不同的路 4-2 關係運算子與條件運算式 4-3 if單選條件敘述 4-4 if/else二選一條件敘述 4-5 if/elif/else多選一條件敘述 4-6 在條件敘述使用邏輯運算子 CH05 重複執行程式碼 5-1 認識迴圈敘述 5-2 for計數迴圈 5-3 while條件迴圈 5-4 改變迴圈的執行流程 5-5 巢狀迴圈與無窮迴圈 5-6 在迴圈中使用條件敘述 CH06 函數 6-1 認識函數 6-2 使用者自訂函數 6-3 函數的參數 6-4 函數的回傳值 6-5 函數的實際應用 6-6 變數範圍和內建函數 CH07 字串與容器型態 7-1 字串型態 7-2 串列型態 7-3 元組型態 7-4 字典型態 7-5 字串與容器型態的運算子 CH08 檔案、類別與例外處理 8-1 檔案處理 8-2 二進位檔案讀寫 8-3 類別與物件 8-4 建立例外處理 CH09 Python模組與套件 9-1 Python模組與套件 9-2 os模組:檔案操作與路徑處理 9-3 math模組:數學函數 9-4 turtle模組:海龜繪圖 9-5 pywin32套件:Office軟體自動化 CH10 使用ChatGPT學習Python程式設計 10-1 認識ChatGPT 10-2 註冊與使用ChatGPT 10-3 ChatGPT是你最佳的Python程式助手 10-4 ChatGPT應用:找出Python視窗程式的學習方向 10-5 ChatGPT應用:幫助你學習Python視窗程式設計 CH11 Pandas套件:匯入與匯出DataFrame 11-1 Pandas套件的基礎 11-2 建立Series和DataFrame物件 11-3 匯入外部資料 11-4 匯出DataFrame物件 11-5 實作案例:使用Pandas爬取HTML表格資料 CH12 檢視、選取與篩選DataFrame資料 12-1 檢視與了解DataFrame資料 12-2 檢視DataFrame的整體資訊 12-3 選取和走訪DataFrame整列與整欄資料 12-4 檢視DataFrame指定欄位的資訊 12-5 篩選DataFrame資料 12-6 實作案例:使用SQL語言篩選DataFrame資料 CH13 DataFrame索引、編輯與資料彙整 13-1 DataFrame索引設定 13-2 使用索引器選取DataFrame子集 13-3 編輯DataFrame資料 13-4 串聯多個DataFrame資料 13-5 實作案例:多個Excel工作表的資料彙整 CH14 DataFrame資料清理、排序與資料合併 14-1 字串與日期/時間的資料處理 14-2 DataFrame資料清理 14-3 DataFrame資料排序 14-4 DataFrame資料合併 14-5 實作案例:DataFrame商業資料清理 CH15 DataFrame資料運算、群組分析與樞紐分析表 15-1 DataFrame資料運算 15-2 DataFrame資料分組的群組分析 15-3 使用DataFrame建立樞紐分析表 15-4 實作案例:使用樞紐分析表進行資料分析 CH16 Pandas+Plotly Express資料視覺化 16-1 認識資料視覺化 16-2 Pandas資料視覺化 16-3 Plotly互動資料視覺化 16-4 實作案例:Tutsplus教學文件的資料視覺化 16-5 實作案例:台積電股價的互動資料視覺化 CHA Google Colab雲端服務基本使用(電子書)

原價: 420 售價: 370 現省: 50元
立即查看
Python資料科學學習手冊 (2版)

Python資料科學學習手冊 (2版)

類似書籍推薦給您

簡介 處理大量資料的基本工具 「這本書提供了清晰且易於遵循的範例,幫助您設置與使用最重要的資料科學和機器學習工具。」 —Anne Bonner Content Simplicity創辦人和CEO Python是許多研究人員的首選工具,它擁有豐富的儲存、操作及洞察資料的程式庫。這些資源散布在資料科學的領域中,藉由本書,您可以一次獲得這些資源,包括Ipython、NumPy、Pandas、Matplotlib、Scikit-Learn和其它相關的工具。 對於熟悉Python,需要處理大量資料的資料科學家和資料處理人員來說,這是一本非常有價值的案頭書。可以有效率地處理每天面對的問題,像是操作、轉換及清理資料,視覺化不同形式的資料,建立統計學或機器學習模型等。 藉由本書,你將可以學習到: ‧IPython和Jupyter:提供資料科學家使用的Python計算環境 ‧NumPy:在Python中進行高效儲存及操作密集資料陣列的ndarrys ‧Pandas:在Python中進行對於標籤式/欄位式的資料高效率儲存與操作 ‧Matplotlib:在Python中進行彈性範圍的資料視覺化功能 ‧Scikit-Learn:提供機器學習演算法以及簡潔的Python實作 作者介紹 Jake VanderPlas 是Google Research的軟體工程師,致力於開發支援資料密集型研究的工具。 他創建並開發了用於資料密集型科學的Python工具,包括Scikit-Learn、SciPy、AstroPy、Altair、JAX等。 目錄 第一章 IPython:更好用的Python Shell還是Notebook IPython 的求助與說明文件 在IPython Shell中的快捷鍵 IPython的Magic命令 輸入和輸出的歷程 IPython和Shell命令 和Shell相關的Magic命令 錯誤以及除錯 剖析和測定程式碼的時間 第二章 NumPy介紹 瞭解Python的資料型態 NumPy陣列基礎 NumPy 陣列屬性 陣列索引:存取單一個陣列元素 在NumPy陣列中的計算:Universal Functions 聚合操作:Min、Max、以及兩者間的所有事 在陣列上的計算:Broadcasting 比較、遮罩以及布林邏輯 Fancy索引 排序陣列 結構化的資料:NumPy的結構化陣列 更多進階的複合型態 第三章 使用Pandas操作資料 安裝並使用Pandas Pandas 物件的介紹 資料的索引和選擇 在Pandas中操作資料 處理缺失資料 階層式索引 資料集的合併:Concat 和Append 合併資料集:Merge 以及Join 聚合計算與分組 樞紐分析表 向量化字串操作 使用時間系列 高效率Pandas:eval() 以及query() 第四章 使用Matplotlib進行視覺化 通用的Matplotlib技巧 買一送一的介面 簡單的線條圖形 簡單的散佈圖 視覺化誤差 密度圖和等高線圖 直方圖、分箱法及密度 自訂圖表的圖例 自訂色彩條 多重子圖表 文字和註解 自訂刻度 客製化Matplotlib:系統配置和樣式表 在Matplotlib中的三維繪圖法 Basemap的地理資料 使用Seaborn進行視覺化 第五章 機器學習 什麼是機器學習? Scikit-Learn簡介 超參數以及模型驗證 特徵工程 深究:Naive Bayes Classification 深究:線性迴歸(Linear Regression) 深究:Support Vector Machines 深究:決策樹(Decision Tree)和隨機森林(Random Forest) 深究:主成份分析(Principal Component Analysis) 深究:流形學習(Manifold Learning) 深究:k- 均集群法 深究:高斯混合模型(Gaussian Mixture Models) 深究:核密度估計(Kernel Density Estimation) 應用:臉部辨識的管線

原價: 980 售價: 833 現省: 147元
立即查看
Python資料分析 第三版 Python for Data Analysis, 3rd Edition (1版)

Python資料分析 第三版 Python for Data Analysis, 3rd Edition (1版)

類似書籍推薦給您

第一章 開場白 第二章 Python 語言基本知識、IPython 與 Jupyter Notebooks 第三章 內建的資料結構、函式與檔案 第四章 NumPy 基本知識:陣列與向量化計算 第五章 pandas 入門 第六章 資料的載入與儲存,及檔案格式 第七章 資料清理與準備 第八章 資料整頓:連接、結合與重塑 第九章 繪圖與視覺化 第十章 彙總與群組操作 第十一章 時間序列 第十二章 Python 建模程式庫簡介 第十三章 資料分析範例 附錄A NumPy 進階功能 附錄B IPython 系統的進階功能

原價: 980 售價: 833 現省: 147元
立即查看