定價: | ||||
售價: | 578元 | |||
庫存: | 已售完 | |||
LINE US! | 詢問這本書 團購優惠、書籍資訊 等 | |||
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單 | ||||
付款方式: | 超商取貨付款 |
![]() |
|
信用卡 |
![]() |
||
線上轉帳 |
![]() |
||
物流方式: | 超商取貨 | ||
宅配 | |||
門市自取 |
為您推薦
類似書籍推薦給您
內容簡介 【世界發生劇變!銷售 AI 化勢在必行!】 AI 議題已經講了好多年,然而絕大多數的企業仍然沿用老路子做生意,亂槍打鳥式的銷售方式也沒甚麼進步。然而時代不同了,既然有 AI 這個好工具為何不用?因為不懂不會所以不知該如何開始?眼睜睜看著 Google、Facebook 靠著 AI 化的銷售技術大賺特賺! 其實,AI 不是大企業才能作,中小企業也可以,但不是全面做,而是挑選適合的做。最容易做到且很快就能換成實績的就是行銷、業務的銷售工作,只要利用自身累積的銷售與客戶等資料就行,讓 AI 自動找出其中隱藏的銷售密碼,並直接運用在工作中驗證,這就是本書的主軸:銷售 AI 化,讓機器學習來幫忙。 【AI 不是打高空,要落實在工作中】 許多工程師學了 AI 技術,卻不知道如何讓技術落地!其實開發以銷售為目的的 AI 並不需要高深的技術,只要用機器學習就能辦到。書中範例使用的都是真實企業產生的工作資料,例如要預測潛在客戶時,可讓 AI 從客戶職業、年齡與過去的銷售實績等資料自動學習,找出資料間的關係建出模型並做出預測,我們就可以對商品或客戶擬定策略去執行計畫。也可以依據過去幾年的每日銷量,考慮節假日的影響,利用 Facebook 提供的時間序列套件去預測未來一段時間的銷量等等。 重要的商用實作範例包括: ●銷售成交預測 ●銷量或來客數預測 ●季節週期性變化預測 ●推薦商品提案 ●根據客群制定銷售策略 本書由世界 500 大企業 Accenture (埃森哲) 公司的 AI 集團資深總監親自執筆,規劃出開發 AI 專案的標準流程,從選擇適合引入工作中的 AI 開始,一路到訓練資料的取得、資料加工、選擇演算法及建立 AI 模型之後的評估與調整等 9 大步驟。即使沒有開發過 AI 專案經驗的人也不用擔心,只要跟著動手做,就能看到成果。 書中的案例會實作監督式學習與非監督式學習中「分類」、「迴歸」、「時間序列」、「關聯分析」、「分群」、「降維」等各種演算法,讓讀者依照問題的類型選擇適用的處理模式。而且每個專案都不馬虎,從頭做到尾一遍一遍演練 SOP,將流程深深印入腦海,熟悉每個步驟之後才能順利應用到自己的專案。 【邁向資料科學家之路】 書中提供的所有 Python 程式都是可以運用在實務工作上的原型,每個人都可以利用這些原型建出自己想要的機器學習模型。了解如何從實務觀點建立 AI,藉由本書了解整個專案的開發流程以及 Python 程式的實作方式,也等於邁出成為資料科學家的第一步。 許多書籍在教導讀者建出 AI 模型後就結束了,但資料科學家最有價值之處就在於建出預測模型後該如何因應提出的需求做調整,本書也會詳細介紹數種調整模型的方法與策略。 【適合的讀者程度】 無論是 MIS、程式設計師、業務或行銷主管、只要具備 Python 程式基礎就可以開始。AI 專案常用的 NumPy、Pandas 與 Matplotlib 等必備 Python 套件,也會在書附講座中一一介紹供讀者練習。開發環境是雲端的 Google Colaboratory,只要能上網就能用,省去在自己電腦安裝軟體的麻煩。 本書特色 1. 世界 500 大 Accenture (埃森哲) 公司 AI 集團資深總監親自執筆 2. 實用性最高!能實際運用在提高公司的銷售績效。 3. 一點都不難!只要具備 Python 語言基礎就能上手。 4. 由施威銘研究室監修,在適當的地方補充說明幫助讀者理解。 目錄 第 1 章 實務的機器學習應用 1.1 本書目的 1.2 參與機器學習專案的人員 1.3 機器學習開發流程 1.4 未來實務專家需具備的技能 1.5 本書架構 第 2 章 解決問題的處理模式 2.1 AI 與機器學習的關係 2.2 機器學習的三種學習方式 2.3 監督式學習的處理模式 2.3.1 分類(Classification) 2.3.2 迴歸(Regression) 2.3.3 時間序列(Time series) 2.4 非監督式學習的處理模式 2.4.1 關聯分析(Association analysis) 2.4.2 分群(Clustering) 2.4.3 降維(Dimension reduction) 2.5 選擇正確的處理模式 2.6 深度學習與結構化、非結構化資料 第 3 章 機器學習模型的開發流程 3.1 模型開發流程 3.2 範例資料與目的說明 3.2.1 範例資料說明 3.2.2 模型的目的 3.3 模型的實作 3.3.1 (1)載入資料 3.3.2 (2)確認資料 3.3.3 (3)預處理資料 3.3.4 (4)分割資料 3.3.5 (5)選擇演算法 3.3.6 (6)訓練 3.3.7 (7)預測 3.3.8 (8)評估 3.3.9 (9)調整 專欄 關於公開資料集 第 4 章 開發流程的深入探討 4.1 確認資料 4.1.1 以數值或統計方式進行分析 4.1.2 視覺化的分析與確認方法 4.2 預處理資料 4.2.1 刪除多餘的資料欄位 4.2.2 處理缺失值 4.2.3 將二元資料數值化 4.2.4 多元資料數值化 4.2.5 資料標準化 4.2.6 其它預處理資料的做法 4.3 選擇演算法 4.3.1 分類模型的代表性演算法與其特色 4.3.2 範例程式碼使用的資料 4.3.3 邏輯斯迴歸(Logistic regression) 4.3.4 支援向量機(SVM)- Kernel method 4.3.5 神經網路演算法(Neural network) 4.3.6 決策樹(Decision tree) 4.3.7 隨機森林(Random forests) 4.3.8 XGBoost 4.3.9 如何選擇演算法 4.4 評估 4.4.1 混淆矩陣(confusion matrix) 4.4.2 正確率、精確性、召回率、F 分數 4.4.3 機率值與閾值 4.4.4 PR 曲線與 ROC 曲線 4.4.5 輸入特徵(資料欄位)的重要性 4.4.6 迴歸模型的評估方法 4.5 調整 4.5.1 多試幾種演算法 4.5.2 演算法參數最佳化 4.5.3 交叉驗證 4.5.4 網格搜尋 第 5 章 銷售 AI 化的案例實作 5.1 銷售成交預測 - 分類模型 5.1.1 問題類型與實務工作場景 5.1.2 範例資料說明與使用案例 5.1.3 模型的概要 5.1.4 從載入資料到確認資料 5.1.5 預處理資料與分割資料 5.1.6 選擇演算法 5.1.7 訓練、預測、評估 5.1.8 調整 5.1.9 重要性分析 專欄 瑕疵與疾病判定模型 5.2 銷量或來客數預測 - 迴歸模型 5.2.1 問題類型與實務工作場景 5.2.2 範例資料說明與使用案例 5.2.3 模型的概要 5.2.4 從載入資料到確認資料 5.2.5 預處理資料與分割資料 5.2.6 選擇演算法 5.2.7 訓練與預測 5.2.8 評估 5.2.9 調整 5.2.10 重要性分析 5.3 季節週期性變化預測 - 時間序列模型 5.3.1 問題類型與實務工作場景 5.3.2 範例資料說明與使用案例 5.3.3 模型的概要 5.3.4 從載入資料到確認資料 5.3.5 預處理資料與分割資料 5.3.6 選擇演算法 5.3.7 訓練與預測 5.3.8 評估 5.3.9 調整(1) 5.3.10 調整(2) 5.3.11 迴歸與時間序列模型的選擇 專欄 「冰淇淋消費預測」的時間序列模型 5.4 推薦商品提案 - 關聯分析模型 5.4.1 問題類型與實務工作場景 5.4.2 範例資料說明與使用案例 5.4.3 模型的概要 5.4.4 從載入資料到確認資料 5.4.5 預處理資料 5.4.6 選擇演算法與分析 5.4.7 調整 5.4.8 關係圖的視覺化 5.4.9 更高階的分析 – 協同過濾 專欄 「尿布與啤酒」僅是都市傳說 5.5 根據客群制定銷售策略 - 分群、降維模型 5.5.1 問題類型與實務工作場景 5.5.2 範例資料說明與使用案例 5.5.3 模型的概要 5.5.4 從載入資料到確認資料 5.5.5 執行分群 5.5.6 分析分群結果 5.5.7 執行降維 5.5.8 降維的運用方式 第 6 章 AI 專案成敗的重要關鍵 6.1 選擇機器學習的適用問題 6.1.1 選擇適合解決問題的模型 6.1.2 取得標準答案是監督式學習的首要工作 6.1.3 勿對 AI 抱持 100% 的期待 6.2 取得並確認工作資料 6.2.1 確認資料來源 6.2.2 跨部門資料整合問題 6.2.3 資料的品質 6.2.4 One-Hot 編碼的問題 專欄 機器學習模型的自動建構工具 AutoML 講座 1 Google Colaboratory 基本操作 講座 2 機器學習的 Python 常用套件 講座 2.1 NumPy 入門 講座 2.2 Pandas 入門 講座 2.3 Matplotlib 入門
類似書籍推薦給您
【簡介】 針對商品感官屬性的評分資料,介紹分析方法與視覺化討論的技巧。 感官資料有各式各樣的形態,除了量化數字,還有質性文字,本書將以量化數字為主軸,透過多變量方法的應用與視覺化技術,來回答:最受消費者喜歡的是哪些特性?現行商品符合市場需求嗎? 本書寫作為完整的資料導向,涵蓋推薦系統和消費者與專家品鑑兩類資料的形狀與特性,實做上則以R 套件SensoMineR 完成分析為重點。每章開場皆以詳述特定的資料結構為鋪陳,希望透過認識資料(know your data)深入感官資料分析的方法。 第一章是基於消費的採購行為所做的關聯推論,也是第二章品鑑資料的基礎。第三章則是稍微特殊一點的感官資料,也就是對商品屬性的專業品鑑,分別針對專業品鑑者(panelists)和商品的多種屬性作系統性分析。第四、五章為「商品角度的感官評分:單維度以及多重的屬性清單」。最後一章則是分析現今最流行的「按讚」行為,從中分析出消費者的偏好。 【目錄】 序 第一章 推薦演算之一:關聯規則與購物籃分析 第一節 交易記錄資料與基礎測量 第二節 關聯規則演算法之一:Apriori 第三節 其他方法 第二章 推薦演算之二:評分資料分析Real Rating 第一節 Real Rating 資料處理 第二節 協同演算法Collaborative Filtering 第三章 感官資料量化分析:ANOVA 方法 第一節 品鑑者角度的感官品鑑:單維度屬性清單 第二節 ANOVA 之一:使用panelperf() 第三節 ANOVA 之二:使用paneliperf() 第四章 商品角度的感官評分之一:單維度屬性清單 第一節 資料 第二節 主成分方法簡介 第三節 adjmean 的主成分分析 第四節 集群分析方法 第五節 adjmean 的集群分析之一:階層式集群樹狀圖 第六節 adjmean 的集群分析之二:K-means 方法 第五章 商品角度的感官評分之二:屬性的多重清單 第一節 利用MFA 建構商品空間 第二節 從Group 角度的整合與詮釋 第三節 資料練習—酒的感官饗宴 第六章 大家一起來按讚:消費者品鑑 第一節 享樂分數資料分析 第二節 當消費者喜好Liking 遇到專家評分Rating 第三節 消費者接受性分析之一:JAR 資料 第四節 消費者接受性分析之二:IPM 資料