定價: | ||||
售價: | 748元 | |||
庫存: | 已售完 | |||
LINE US! | 詢問這本書 團購優惠、書籍資訊 等 | |||
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單 | ||||
付款方式: | 超商取貨付款 |
![]() |
|
信用卡 |
![]() |
||
線上轉帳 |
![]() |
||
物流方式: | 超商取貨 | ||
宅配 | |||
門市自取 |
為您推薦
類似書籍推薦給您
簡介 處理大量資料的基本工具 「這本書提供了清晰且易於遵循的範例,幫助您設置與使用最重要的資料科學和機器學習工具。」 —Anne Bonner Content Simplicity創辦人和CEO Python是許多研究人員的首選工具,它擁有豐富的儲存、操作及洞察資料的程式庫。這些資源散布在資料科學的領域中,藉由本書,您可以一次獲得這些資源,包括Ipython、NumPy、Pandas、Matplotlib、Scikit-Learn和其它相關的工具。 對於熟悉Python,需要處理大量資料的資料科學家和資料處理人員來說,這是一本非常有價值的案頭書。可以有效率地處理每天面對的問題,像是操作、轉換及清理資料,視覺化不同形式的資料,建立統計學或機器學習模型等。 藉由本書,你將可以學習到: ‧IPython和Jupyter:提供資料科學家使用的Python計算環境 ‧NumPy:在Python中進行高效儲存及操作密集資料陣列的ndarrys ‧Pandas:在Python中進行對於標籤式/欄位式的資料高效率儲存與操作 ‧Matplotlib:在Python中進行彈性範圍的資料視覺化功能 ‧Scikit-Learn:提供機器學習演算法以及簡潔的Python實作 作者介紹 Jake VanderPlas 是Google Research的軟體工程師,致力於開發支援資料密集型研究的工具。 他創建並開發了用於資料密集型科學的Python工具,包括Scikit-Learn、SciPy、AstroPy、Altair、JAX等。 目錄 第一章 IPython:更好用的Python Shell還是Notebook IPython 的求助與說明文件 在IPython Shell中的快捷鍵 IPython的Magic命令 輸入和輸出的歷程 IPython和Shell命令 和Shell相關的Magic命令 錯誤以及除錯 剖析和測定程式碼的時間 第二章 NumPy介紹 瞭解Python的資料型態 NumPy陣列基礎 NumPy 陣列屬性 陣列索引:存取單一個陣列元素 在NumPy陣列中的計算:Universal Functions 聚合操作:Min、Max、以及兩者間的所有事 在陣列上的計算:Broadcasting 比較、遮罩以及布林邏輯 Fancy索引 排序陣列 結構化的資料:NumPy的結構化陣列 更多進階的複合型態 第三章 使用Pandas操作資料 安裝並使用Pandas Pandas 物件的介紹 資料的索引和選擇 在Pandas中操作資料 處理缺失資料 階層式索引 資料集的合併:Concat 和Append 合併資料集:Merge 以及Join 聚合計算與分組 樞紐分析表 向量化字串操作 使用時間系列 高效率Pandas:eval() 以及query() 第四章 使用Matplotlib進行視覺化 通用的Matplotlib技巧 買一送一的介面 簡單的線條圖形 簡單的散佈圖 視覺化誤差 密度圖和等高線圖 直方圖、分箱法及密度 自訂圖表的圖例 自訂色彩條 多重子圖表 文字和註解 自訂刻度 客製化Matplotlib:系統配置和樣式表 在Matplotlib中的三維繪圖法 Basemap的地理資料 使用Seaborn進行視覺化 第五章 機器學習 什麼是機器學習? Scikit-Learn簡介 超參數以及模型驗證 特徵工程 深究:Naive Bayes Classification 深究:線性迴歸(Linear Regression) 深究:Support Vector Machines 深究:決策樹(Decision Tree)和隨機森林(Random Forest) 深究:主成份分析(Principal Component Analysis) 深究:流形學習(Manifold Learning) 深究:k- 均集群法 深究:高斯混合模型(Gaussian Mixture Models) 深究:核密度估計(Kernel Density Estimation) 應用:臉部辨識的管線
類似書籍推薦給您
特色 廣受讀者好評、第二版登場! 紮實地學會資料分析工程師所需要的基本技能 書中會對資料分析工程師所需要的基本技巧進行詳盡解說。 ‧取得資料、處理資料 ‧資料視覺處理 ‧編寫程式碼 ‧基礎數學知識 ‧機器學習的流程與執行方法 第2版的重點 ‧支援Python 3.10版本 ‧用更深入淺出的方式進行講解 在書中可以學到 ‧Python基本語法 ‧講解資料格式 ‧資料的預處理技巧 ‧資料視覺處理技巧 ‧運用現成的演算法來執行機器學習 適合對象 想成為資料分析工程師的讀者 目錄 Chapter 1 資料分析工程師的職責 1.1 資料分析的世界 1.2 機械學習的定位與流程 1.3 資料分析主要會用到的套件 Chapter 2 Python與環境 2.1 建構執行環境 2.2 Python的基礎 2.3 JupyterLab Chapter 3 基礎數學 3.1 讀懂公式的基礎知識 3.2 線性代數 3.3 基礎解析 3.4 機率與統計 Chapter 4 運用函式庫實作資料分析 4.1 NumPy 4.2 pandas 4.3 Matplotlib 4.4 scikit-learn Chapter 5 應用:蒐集、處理資料 5.1 網頁抓取 5.2 自然語言的處理 5.3 處理圖像資料