書名: 機器學習:探索人工智慧關鍵 2018<台灣金融研訓院>
作者: Ethem Alpaydin
ISBN: 9789863991151
書籍開數、尺寸: 15x21x1
頁數: 200
內文印刷顏色: 單色
定價: 400
售價: 380
庫存: 已售完
LINE US! 詢問這本書 團購優惠、書籍資訊 等
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單

付款方式: 超商取貨付款 line pay
信用卡 全支付
線上轉帳 Apple pay
物流方式: 超商取貨
宅配
門市自取

為您推薦

資料探勘:人工智慧與機器學習發展以SPSS Modeler為範例

資料探勘:人工智慧與機器學習發展以SPSS Modeler為範例

類似書籍推薦給您

原價: 690 售價: 587 現省: 103元
立即查看
文科生也學得會!資料科學 ✕ 機器學習實戰探索 - 使用 Excel (1版)

文科生也學得會!資料科學 ✕ 機器學習實戰探索 - 使用 Excel (1版)

類似書籍推薦給您

原價: 550 售價: 495 現省: 55元
立即查看
超圖解資料科學 ✕ 機器學習實戰探索:使用 Python (1版)

超圖解資料科學 ✕ 機器學習實戰探索:使用 Python (1版)

類似書籍推薦給您

【簡介】 資料科學、機器學習是近來最夯的關鍵字, 所引發的學習熱潮從未間斷。然而初學的你只要稍微上網搜尋可能會發現, 資料科學涉及的領域實在超~級~廣, 包括 AI、機器學習、程式設計、資料視覺化、數學、統計...等等, 一拖拉庫的名詞都與資料科學沾上邊;相關書籍更是不少, 各書的切入點明顯都不一樣, 卻都一致高喊「我帶你學資料科學!」讓初學者看得更花了, 對於如何入門愈來愈沒頭緒... 這麼雜到底怎麼學?AI、統計、Python / R 程式語言...通通碰過一輪? 先看完這本書再說!與其雜亂無章東學西學, 本書大聲告訴你:「資料科學沒那麼複雜!」, 只要跟著書中精心設計的「資料科學 5 步驟」: 問個感興趣的問題 → 資料取得 → 資料處理 → 探索性資料分析 → 機器學習做資料分析 「記牢」、「做熟」這 5 步就夠了! [鐵了心就是要你會!利用 Colab ✕ Python 反覆操演] 在各步驟中, 我們會帶你用 Colab 免費雲端平台以及 Python 這個超夯工具動手操演多個資料科學經典案例, 讀者可以從過程中逐步吸收資科科學乃至於機器學習各階段要處理的「眉眉角角」。 要是做過一輪還不熟沒關係, 我們換個範例多 run 幾遍!幾輪下來一定會對資料科學的內涵更加清晰, 也會對機器學習在其中所扮演的角色有更深刻的認識! [圖解爆棚, 隨便翻閱都有感] 更棒的是, 學習資料科學、機器學習免不了會碰到許多看起來很難懂的數學公式, 實作時也得學習各種陌生的 Python 語法, 為此作者特別在書中設計大量插圖, 協助你有效率地理解內容;而每一章最前面的「學習地圖」更可以幫你隨時掌握學習脈絡, 有這些超圖解的「加持」, 讓你遇到再複雜的概念也不怕! 【目錄】 Ch01 破冰!資料科學觀念養成 Ch02 Python 資料科學實作平台:Google Colab Ch03 認識資料科學神器 pandas 並用網路爬蟲取得資料 Ch04 初探資料科學 (一):用 pandas 做資料前處理 Ch05 初探資料科學 (二):用資料視覺化發掘重要資訊 Ch06 經典案例演練!更深入的探索性資料分析 Ch07 資料科學 Level UP!認識機器學習演算法 Ch08 機器學習實戰 (一):用線性迴歸分析做趨勢預測 Ch09 機器學習實戰 (二):用 K最近鄰法 (KNN) 做分類 Ch10 機器學習實戰 (三):用 K平均法 (K-Means) 做分群

原價: 560 售價: 504 現省: 56元
立即查看
Python 資料科學實戰教本 - 爬蟲、清理、資料庫、視覺化、探索式分析、機器學習建模,數據工程一次搞定! (1版)

Python 資料科學實戰教本 - 爬蟲、清理、資料庫、視覺化、探索式分析、機器學習建模,數據工程一次搞定! (1版)

類似書籍推薦給您

Python 資料科學實戰教本 - 爬蟲、清理、資料庫、視覺化、探索式分析、機器學習建模,數據工程一次搞定! ISBN13:9789863127246 出版社:旗標出版社 作者:陳會安 裝訂/頁數:平裝/616頁 規格:23cm*17cm*2.8cm (高/寬/厚) 重量:946克 出版日:2022/08/22 中國圖書分類:電腦科學 內容簡介 【題材涵蓋最全面!一本書掌握資料科學 / 數據工程必學 know-how!】   從大數據到人工智慧世代,其背後蘊含的關鍵技術與理論不脫資料科學、機器學習的範疇。基本上,資料科學需要的背景知識與技能相當的多,通常要會 Python 程式設計基礎、熟悉相關 Python 套件和模組的使用;再加上機器學習的基礎就是機率和統計,因此也免不了得學機率和統計知識,可說有一拖拉庫的主題等著你去學,也難怪市面上各主題 (程式基礎、統計、套件、機器學習建模...) 的專書滿坑滿谷,一時間實在讓人難以消化...   為了降低讀者初學資料科學面對的負擔以及混亂感,我們精心設計了這本入門實戰教本,秉持讓讀者「買一本抵多本」的精神,本書一次涵蓋所有入門必須熟悉的重要題材,同時也將初學資料科學的脈絡梳理清楚。   在章節的安排上,本書從資料取得的網路爬蟲開始,提供一個標準 SOP 來幫助讀者從網路取得資料;接著說明資料科學必學的 Python 重量級套件,再接著介紹機率、統計和探索式資料分析的基礎知識,最後進入最熱門的機器學習、深度學習建模主題。   這一連串「取得資料 → 探索資料 → 預測分析」是一套完整的資料科學 / 數據工程實戰訓練,跟著本書掌握這些重要 know-how 後,就不難看懂網路上眾多資料科學、機器學習專案的 Python 程式碼和線上教材,甚至參與資料科學、機器學習的網路競賽;希望本書能協助讀者開啟資料科學家 / 數據工程師的成功之路!   本書特色   □ 資料科學三部曲:取得資料 → 探索資料 → 預測分析 □ 一次補足最入門的統計和機率基礎 □ Python 開發環境與基礎語法快速上手 □ 從網頁爬蟲、資料清理到資料視覺化,快速完成資料探索的預處理程序 □ 將清理後的資料存入 SQL 資料庫,便於日後存取利用 □ 實踐資料科學的四大套件:NumPy、Pandas、Matplotlib、Seaborn 一次掌握 □ 用 Scikit-learn、tensorflow.Keras 套件實作最熱門的 AI 機器學習應用 目錄 第一篇 資料科學和 Python 基礎 第 1 章 資料科學概論與開發環境建立 – Anaconda 第 2 章 Python 程式語言   第二篇 網路爬蟲和 Open Data (取得、清理與儲存資料) 第 3 章 取得網路資料 第 4 章 資料擷取 第 5 章 資料清理與資料儲存 第 6 章 網路爬蟲實作案例   第三篇 Python資料科學套件 – 探索資料(資料視覺化與大數據分析) 第 7 章 向量與矩陣運算 – NumPy 套件 第 8 章 資料處理與分析 – Pandas 套件 第 9 章 大數據分析 (一) – Matplotlib 和 Pandas 資料視覺化 第 10 章 大數據分析 (二) – Seaborn 統計資料視覺化 第 11 章 機率與統計 第 12 章 估計與檢定 第 13 章 探索性資料分析實作案例   第四篇 人工智慧、機器學習與深度學習 – 預測資料 第 14 章 人工智慧與機器學習概論 – 認識深度學習 第 15 章 機器學習演算法實作案例 – 迴歸 第 16 章 機器學習演算法實作案例 – 分類與分群 第 17 章 深度學習神經網路實作案例   附錄 A:HTML 網頁結構與 CSS 附錄 B:Python 文字檔案存取與字串處理 附錄 C:下載與安裝 MongoDB 和 MySQL 資料庫

原價: 680 售價: 612 現省: 68元
立即查看
資料科學的統計實務:探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步 (1版)

資料科學的統計實務:探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步 (1版)

類似書籍推薦給您

很多資料科學、機器學習的書,內容充滿各種建模的技術展示、完美的案例分析,卻忘記了更重要的「資料」。唯有掌握好手中的資料,才是機器學習成功建模的第一步。   無法了解資料,深度學習也救不了你;相反的,正確蒐集資料,輕鬆建模沒煩惱。   如何了解資料?當然要從統計觀念開始。學習統計一定都要看抽象複雜的數學嗎?並不是!本書所使用的範例,會告訴大家「為什麼統計學要如此定義」、「為什麼技巧要那樣使用」。當讀者了解統計背後的觀念時,才不會迷失在複雜的數學。此外,有別於一般市售書籍總是用漂亮案例展示程式運行結果,此書用相當多的範例都是「專家也會犯的錯誤」,相信讀者同時學習成功以及失敗的案例後,可以更全面地了解資料科學的分析流程觀念。   本書會介紹資料分析中的許多技術的基本觀念,如變異數分析、偏相關係數、自相關函數、Bonferroni校正、Holm校正、隨機對照試驗、斷點迴歸分析、傾向評分匹配、T檢定、F檢定、分層多階段抽樣法等,介紹的過程中會直擊分析技術的思維,而非僅展示漂亮的數學。   本書亦會說明身為資料科學家該有的素養,來避免確認偏誤、倖存者偏誤、選擇偏誤、發表偏誤、自願者偏誤、可得性偏誤、樂觀偏誤、常態偏誤、後此謬論、賭徒謬誤、辛普森謬論、p-hacking、HARKing、單方論證、霍桑效應、畢馬龍效應等資料分析中可能踩到的陷阱。 目錄 序言 第一篇 資料特性的相關知識 第1章 測量其實並非易事 1.1 測量資料 1.2 測量的難處 1.3 測量誤差之外的誤差 第2章 資料誤差 2.1 測量標準的選擇 2.2 問卷帶來的問題 2.3 抽樣母體誤差 2.4 沒觀測誤差 2.5 回答者帶來的問題 2.6 發表偏誤(Publication Bias) 第3章 測量誤差中的隨機誤差 (Random Error) 與偏誤 (Bias) 3.1 測量誤差(Measurement Error)的分析 3.2 誤差與機率分佈(Probability Distribution) 3.3 機率分佈的相關知識 3.4 處理隨機誤差 (Random Error) 第4章 資料抽樣方法論 4.1 抽樣的概念 4.2 抽樣的方法 第二篇 資料分析的相關知識 第5章 資料分析的基本流程 5.1 檢查手中資料 5.2 正確分析資料 5.3 妥善管理資料 第6章 干擾因子(Confounding Factor)與因果關係 6.1 兩個變數之間的關聯 6.2 面對並處理干擾因子(Confounding Factor) 6.3 無法使用隨機對照試驗(Randomized Controlled Trial)的處理方式 第7章 單一變數的分析手法 7.1 探討敘述統計量 (Descriptive Statistics) 7.2 探討資料分佈 7.3 探討理論分佈 7.4 探討時序資料 第8章 探究變數之間的關係 – 假設檢定(Hypothesis Testing)、檢定三步驟、手法選擇、相關係數、效應大小(Effect Size) 8.1 比較兩個變數的數值 8.2 關於假設檢定的思維 8.3 研究兩個變數的相關性 第9章 解讀多變數資料 9.1 探索分析與多重檢定 9.2 變異數分析(Analysis of Variance)與多重比較 9.3 探究相關結構 9.4 分析方法整理 第10章 數學模型的要點 10.1 簡介數學模型 10.2 配合目標來建立模型 10.3 使用模型進行預測(Prediction) 第三篇 資料活用的相關知識 第11章 分析資料的陷阱 11.1 資料操作時容易遇到的陷阱 11.2 資料有限時容易遇到的陷阱 11.3 資料推論時容易遇到的陷阱 第12章 解讀資料的陷阱 12.1 分析結果的可信度 12.2 解讀資料的認知偏誤 第13章 運用資料的陷阱 13.1 依不同目標做出評估跟決策 13.2 獲取資料的實際考量 13.3 現實世界與資料分析的差異

原價: 599 售價: 539 現省: 60元
立即查看