定價: | ||||
售價: | 408元 | |||
庫存: | 已售完 | |||
LINE US! | 詢問這本書 團購優惠、書籍資訊 等 | |||
此書籍已售完,調書籍需2-5工作日。建議與有庫存書籍分開下單 | ||||
付款方式: | 超商取貨付款 |
![]() |
|
信用卡 |
![]() |
||
線上轉帳 |
![]() |
||
物流方式: | 超商取貨 | ||
宅配 | |||
門市自取 |
為您推薦
類似書籍推薦給您
【簡介】 【講重點系列帶你制霸考科】 刷考古題之前先讀懂這一本! 面對考試不僅要會解題,更要有紮實基本功! ★ 匯集補教名師多年教學經驗 ★ 章節編排由淺入深、吸收效率倍增 ★ 收錄各類經典題型、搭配詳解一點就通 這樣的你適合這本書: ☆ 新手入門 ☆ 加強觀念 ☆ 考前重點複習 ☆ 專業進修 你值得優質的書籍 這本書陪你一起成長! 【講重點×試題大補帖必勝組合】 講重點系列觀念解析 + 試題大補帖刷題練習 大碩教育提供你全方面的備考戰術! 初階入門、加強複習都適用! ★兩種系列一起閱讀 離上榜之路更近一步★ 本書內容既有廣度跟深度,除保留原文的專有名詞以避免翻譯的差異外,內文大多採中文說明,部分重要概念除內文說明,另在YouTube平台提供數位教學頻道【歐大亮 Ohda】,讀者可以配合此書學習。 本書也提供了很多的例題,讀者就可以依照所了解的內容練習刷題,在解例題時,如果遇到困難先不要急著看答案,可以先拿出相關的定義或是定理參考,並且搭配作者在youtube的教學影片,讀者可利用QR code所提供的連結,嘗試解題和練習來加強觀念。 本書適用於研究所入學及轉學考考試,其特點如下: 1.筆者將線性代數分為兩個部份說明,一為基礎線代,適合機械、化工、環工、土木等科系;二為電機線代,適合電機電子科系需另外加強的內容,本書內容主要為基礎線代。 2.用直覺圖像化的方式來闡述線性代數,題型豐富且分類清楚。 對於讀者,不論在考試或是研究上都能有很大的助益。 【目錄】 第0章 預備知識 0-1 數系(Number) 0-2 集合論 0-3 關係(Relation) 0-4 常見邏輯符號 0-5 函數 0-6 體(Field) 第1章 矩陣基礎運算 1-1 矩陣的定義 1-2 矩陣的基本運算 1-3 行列式(Determinant) 1-4 矩陣的秩與線性方程式組 1-5 向量空間與基底 1-6 內積與範數 1-7 反矩陣(Inverse Matrix) 第2章 矩陣特徵現象 2-1 變換矩陣 2-2 特徵現象 2-3 特徵值與特徵向量的性質 2-4 特殊矩陣之特徵性質 第3章 矩陣對角化及其應用 3-1 相似轉換 3-2 矩陣對角化(矩陣最簡化) 3-3 喬登正則式(Jordan Canonical Form) 3-4 可對角化矩陣之函數 3-5 不可對角化矩陣之函數 3-6 多項式矩陣函數性質 3-7 解聯立O.D.E. 第4章 矩陣分析之應用 4-1 二次式與實對稱方陣 4-2 實對稱方陣與恆性 4-3 多變數函數求極值(參考)
類似書籍推薦給您
【簡介】 對於科學發展而言,微積分對應的是古典力學;線性代數則對應的是量子力學。線性代數看似起步較晚,然而其涵蓋的範圍快速擴張,幾乎與微積分比肩齊行。對工業技術而言,第五次工業革命是一個從機械化、電氣化、自動化、數位化到人因化的漸進發展結果,人工智慧(Artificial Intelligence, AI)的應用,對現代科技與日常生活的穿透力,早已是無遠弗屆,勢不可擋。然而發展人工智慧的關鍵,就在於數學基礎,更精確地說,則是微積分、線性代數,再加上機率與統計。 本書的內容包含了線性代數的範圍、向量與矩陣、線性方程式、向量空間、投影與線性轉換、行列式、本徵值與本徵向量、正定矩陣與應用、不變子空間、Jordan標準式、奇異值分解。教材目標主要是介紹基礎的線性代數概念,指向人工智慧的數學基礎所需,而定理的證明,盡量以簡明的範例與練習運算作說明。詳細的計算過程載於另冊,讀者可參閱《基礎線性代數範例與練習解答》一書。 本書可作為「線性代數」、「高等代數」、「抽象代數」、「工程數學」相關科目的參考教材。 【目錄】 第1章 線性代數緒論 1-1 線性代數的內容 1-2 線性代數的範疇 1-3 純量、向量、矩陣與八元數的緣起 1-4 向量與矩陣的關係 1-5 線性代數的基本元素 1-5-1 維度初探 1-5-2 向量 1-5-3 矩陣 1-5-4 向量空間 1-6 向量的維度、矩陣的維度與向量空間的維度 1-7 增廣矩陣法 1-8 線性代數的架構 第2章 向量與矩陣 2-1 向量和矩陣 2-1-1 向量的運算 2-1-2 矩陣的運算 2-1-3 矩陣和向量的乘法運算 2-1-4 矩陣分區 2-1-5 向量與向量的乘積 2-1-6 外積與線性映射 2-1-7 矩陣與向量的乘積 2-1-8 矩陣與矩陣的乘積 2-2 矩陣相乘的四種圖像 2-3 矩陣的跡 2-4 基本矩陣 2-5 逆矩陣和逆置操作 2-6 逆矩陣的幾何解釋 2-7 轉置操作 2-8 置換矩陣 2-9 對稱矩陣 2-9-1 對稱矩陣的特性 2-9-2 斜對稱矩陣(Skew symmetric matrix)的特性 2-9-3 建構對稱矩陣的方法 2-10 正交矩陣與正交歸一矩陣 2-10-1 正交矩陣 2-10-2 正交矩陣的特性 2-10-3 正交轉換的特性 2-10-4 對稱矩陣正交對角化的演算 2-11 Hermitian矩陣 2-12 么正矩陣 2-13 冪零矩陣 2-14 冪等矩陣 2-15 正規矩陣 第3章 解線性方程式的基礎 3-1 樞軸變數與自由變數 3-2 梯形矩陣、列梯矩陣和最簡列梯矩陣 3-2-1 梯形矩陣 3-2-2 列梯矩陣 3-2-3 最簡列梯矩陣 3-3 列簡化法 3-4 樞軸變數與自由變數 3-5 矩陣的LU分解與求解方程式 3-5-1 主子式 3-5-2 矩陣的LU分解 3-5-3 A = LU和PA = LU 3-5-4 LU分解的演算法 第4章 線性方程組 4-1 線性代數的幾何原理 4-1-1 向量的幾何圖像 4-1-2 線性方程組的幾何圖像 4-2 線性幾何和線性方程組 4-2-1 線性空間的交點 4-2-2 向量的線性組合 4-3 線性聯立方程組的四種圖像 4-4 矩陣方程組的解 4-5 解線性方程組的方法 4-5-1 後向替代法 4-5-2 求解線性方程組──LU分解 4-5-3 求解線性方程組──Gauss-Jordan消去法 4-6 最簡列梯矩陣與線性方程組的完整解 4-7 一致的方程組與不一致的方程組 4-8 方程組解和矩陣表示的關係 第5章 向量空間 5-1 向量空間與向量子空間 5-2 函數和向量的關係 5-3 向量子空間的交集與聯集 5-4 矩陣的四個基本向量子空間 5-5 向量子空間的維度 5-6 四個基本向量子空間基底向量的定義 5-6-1 由定義求四個基本向量子空間 5-6-2 以圖像法求四個向量子空間 5-6-3 以增廣矩陣法求四個向量子空間 5-7 對偶空間 5-8 正交補餘 第6章 線性轉換與投影 6-1 線性轉換 6-2 線性變換與矩陣 6-3 矩陣變換的幾何意義 6-4 平面的線性變換的幾何學 6-5 齊次座標 6-6 正交投影 6-7 Gram-Schmidt 過程 6-8 投影矩陣 6-8-1 正交投影矩陣 6-8-2 投影矩陣的表示式 6-8-3 有序基底 6-9 改變基底向量的效應 6-9-1 基底變化對向量表示的影響 6-9-2 基底變化對線性轉換矩陣表示的影響 6-10 基底變化對線性算符矩陣的影響 6-11 QR 分解 6-11-1 QR分解與求解方程式 6-11-2 矩陣的QR分解 6-11-3 矩陣A行向量是獨立的 6-11-4 矩陣A行向量不是獨立的 6-11-5 完整的QR分解 第7章 行列式 7-1 行列式的定義 7-2 行列式的計算 7-3 行列式的性質 7-4 三個計算行列式值的方法 7-4-1 行列式的樞軸法 7-4-2 行列式的置換展開 7-4-3 行列式的餘因數法 7-5 行列式和幾何學 7-6 Cramer 規則 7-7 非齊次方程式和參數變化法 第8章 本徵值與本徵向量 8-1 本徵值與本徵向量 8-2 本徵值和本徵向量的幾何意義 8-3 幾何重根數與代數重根數 8-4 本徵值的三個性質 8-5 矩陣對角化 8-6 相似轉換的重要特性 8-7 矩陣的平方根 8-8 矩陣可以被對角化的條件 第9章 正定矩陣與應用 9-1 範數 9-2 波譜分解 9-3 二次形式 9-4 二次形式的矩陣的基底轉換規則 9-5 主軸理論 9-6 主軸的幾何學觀點 9-7 正定矩陣 9-8 Cholesky分解 9-9 多變數梯度 9-9-1 Rayleigh商的極值 9-9-2 極大化極小原理與極小化極大原理 第10章 不變子空間 10-1 不變子空間 10-2 廣義本徵向量初探 10-3 塊狀三角形矩陣或塊狀對角矩陣的演算法 10-4 不變子空間的圖像概念 10-5 不變子空間的定義 10-6 不變子空間的基底向量 10-7 幾個重要的例子 10-8 塊狀三角形矩陣 10-9 由線性獨立向量延伸出一組基底的方法 10-10 對角區塊形式與不變子空間的直和 第11章 Jordan標準式 11-1 複數與實數的差異 11-2 向量空間的實數化和複數化 11-2-1 複數 11-2-2 複數向量 11-2-3 複數向量空間 11-2-4 複數向量矩陣的共軛 11-2-5 複數向量矩陣 11-2-6 複數線性轉換 11-3 實數矩陣的複數可對角化與複數不可對角化 11-3-1 複數可對角化的實數矩陣 11-3-2 複數不可對角化的實數矩陣 11-4 複數本徵值的動力學 11-4-1 複矩陣與複數的類同 11-4-2 一個具有複數本徵值的(2 × 2)矩陣的動力學過程 11-5 Jordan分解 11-6 Jordan形式的矩陣理論基礎 11-6-1 行空間、零核空間與Jordan標準基底 11-6-2 Jordan點圖 11-7 Jordan標準形式初探 11-8 廣義本徵向量 11-9 廣義本徵向量鏈 11-10 方陣和Jordan標準形式的關係 11-11 Jordan標準形式的演算法 11-12 點圖與Jordan基底向量 11-12-1 上面對齊的Jordan點圖寬度和長度的方式 11-12-2 下面對齊的Jordan點圖寬度和長度的方式 11-13 Jordan標準形式的演練 11-14 Jordan形式的次冪運算 第12章 奇異值分解 12-1 奇異值分解的直覺定義 12-2 SVD的演算法 12-3 奇異值分解的演算與應用 12-4 SVD和四個基本子空間 12-5 奇異值分解的原理 12-6 極分解 12-6-1 右/左極分解 12-7 廣義逆矩陣 12-8 左逆矩陣和右逆矩陣、廣義逆矩陣 12-8-1 左逆矩陣 12-8-2 右逆矩陣 12-8-3 廣義逆矩陣與四個基本向量子空間 12-9 廣義線性模型 12-9-1 簡單回歸和多元回歸 12-9-2 線性最小方乘法問題的一般解 12-9-3 最小範數解和最小平方誤差問題 12-9-4 不完全確定方程組和過度確定的方程組 參考資料 索引
類似書籍推薦給您
【簡介】 原文書資訊 書名:Linear Algebra with Applications Global Edition 10/E 2021 <PH> 作者: LEON ISBN: 9781292354866 出版社: Pearson 出版年: 2021年 書籍目錄: 1. Matrices and Systems of Equations 2. Determinants 3. Vector Spaces 4. Linear Transformations 5. Orthogonality 6. Eigenvalues 7. Numerical Linear Algebra 8. Canonical Forms Appendix: MATLAB Answers to Selected Exercises 中文書資訊 書名: 線性代數 Linear Algebra with Applications 作者: LEON/ 蔡政穆 ISBN: 9789813352063 出版社: 鼎隆 出版年: 2025年 書籍目錄: 第1章 矩陣與方程式系統 第2章 行列式 第3章 向量空間 第4章 線性轉換 第5章 正交 第6章 特徵值 第7章 數值線性代數 附錄 MATLAB 精選習題解答